% SIGNAL = sinusoids + noise % Setting up the signal parameters and time history N=100; a0=1.8; a1=1.5; theta1=1.3; a2=2; theta2=1.35; k=1:N; k=k(:); y=a0*randn(N,1)+a1*exp(1i*(theta1*k+2*pi*rand))+a2*exp(1i*(theta2*k+2*pi*rand));
IntroductionConsider a discrete-time zero-mean stationary process ![]() ![]() represents power density over frequency. Under suitable smoothness conditions, it is also ![]() Spectral estimation refers to esimating In contrast, recently, the analysis of state covariance matrices, see e.g. [1, 2], suggested a general framework which alows even higher resolution. A series of generalized spectral estimation tools have been developed generalizing Burg, Capon, MUSIC, ESPRIT, etc.. In the following, we will overview some of these high resolution methods and the relevant computer software. Their use is shown via a representative academic examples. We want to resolve two sinusoids in based on ![]() where % SIGNAL = sinusoids + noise % Setting up the signal parameters and time history N=100; a0=1.8; a1=1.5; theta1=1.3; a2=2; theta2=1.35; k=1:N; k=k(:); y=a0*randn(N,1)+a1*exp(1i*(theta1*k+2*pi*rand))+a2*exp(1i*(theta2*k+2*pi*rand));
|