Jian-Ping Wang

Professor

Research Area: Spintronics, Magnetics, Magnetic Information Storage and Processing, Biomagnetic Applications

6-153 Keller Hall
612-625-9509
jpwang@umn.edu
http://www.nanospin.umn.edu/

Area of Expertise:

Nano magnetic and spintronic materials and devices, magnetic and spintronic information storage and computing technologies, magnetic biomedical technologies

Faculty Affiliations:

Director of Center for Spintronic Materials for Advanced Information Technologies (SMART); Director of Center for Spintronic Materials, Interfaces and Novel Architectures (C-SPIN); Center for Micromanetics and Information Technologies; Graduate Faculty – Dept. of Physics; Graduate Faculty – Dept. of Chemical Engineering and Materials Science;

Education:

Postdoctoral fellowship, 1996, National University of Singapore
Ph.D., Physics, 1995, Institute of Physics, CAS
M.S., Physics, 1992, Lanzhou University
B.S., Physics, 1989, Lanzhou University

Honors/Awards:

2006 Information Storage Industry Consortium (INSIC) Technical Achievement Award
2010 Outstanding Professor for Undergraduate Teaching, College of Science and Engineering, University of Minnesota
2012 Distinguished McKnight University Professorship, University of Minnesota
2014 Titans of Technology – Inventor (Minneapolis-St. Paul Business Journal)
2014-2016 Centennial Chair in Electrical and Computer Engineering
2015 IEEE Fellow for contributions to magnetic material and spintronic devices for magnetic recording, information processing and biomedical applications
2016 Robert F. Hartmann Chair in Electrical and Computer Engineering
2019 Innovator Award of Entrepreneurial Researcher
2019 Semiconductor Research Corporation (SRC) Technical Excellence Award

Synopsis:

My primary research interests include Nanomagnetism and Quantum Spintronics with a focus on searching, fundamentally understanding and fabricating novel magnetic materials and quantum spintronic devices. Some of research programs in my group are listed as below.

To study magnetic materials with extremely high magnetic anisotropy, giant saturation magnetization, high spin polarization ratio and large spin-orbit torque and find new ways to make such materials applicable for future information storage and computing, biomedical and green energy technologies.

To design and apply nanomagnetic materials and spintronic devices for disease early detection and neuron stimulation and sensing.

To purse fundamental understanding of new spintronic phenomenon and design and fabricate novel spintronic devices such as spin-based memory, spin-based logic device and system and quantum computing bits and gates.

Publications:

“A Pathway to Enable Exponential Scaling for the Beyond-CMOS Era”, Proceedings of the 54th Annual Design Automation Conference 2017 (p. 16). (2017) J. P. Wang, et al, https://dl.acm.org/citation.cfm?doid=3061639.3072942

“Tunable magnetic domain walls for therapeutic neuronmodulation at cellular level: Stimulating neurons through magnetic domain walls”, Journal of Applied Physics, 126: 183902 (2019) (featured article), D.Su, K. Wu, R. Saha and J. P. Wang, http://dx.doi.org/10.1063/1.5122753

“Development of a multiplexed giant magnetoresistive biosensor array prototype to quantify ovarian cancer biomarkers”, Biosensors and Bioelectronics, 126: 301-307(2019), T. Klein, W. Wang, L. Yu, K. Wu, K. L. Boylan,R. I. Vogel, A. P. Skubitz and J. P. Wang, http://dx.doi.org/10.1016/j.bios.2018.10.046

“Nitriding and martensitic phase transformation of the Copper and Boron doped Iron Nitride magnet”, Acta Materialia, 167: 80-88 (2019), M. Mehedi,Y. Jiang, B. Ma and J. P. Wang, http://dx.doi.org/10.1016/j.actamat.2019.01.034

“Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe(1–x) films”, Nature Materials, 17: 800-807(2018), D. C. Mahendra, R. Grassi, J. Y.  Chen, M.Jamali, D. Reifsnyder Hickey, D.Zhang, Z. Zhao, H. Li, P. Quarterman, Y. Lv, M. Li, A. Manchon, K. A. Mkhoyan, T.Low and J. P. Wang, http://dx.doi.org/10.1038/s41563-018-0136-z

“Demonstration of Ru as the 4th ferromagnetic element at roomtemperature”, Nature communications 9 (1): 2058 (2018), P. Quarterman, C.  Sun, J. Garcia-Barriocanal, D. C. Mahendra, Y.Lv, S. Manipatruni, D. E. Nikonov, I. A. Young, P. M. Voyles and J. P. Wang, http://dx.doi.org/10.1038/s41467-018-04512-1

“Unidirectional spin-Hall and Rashba− Edelsteinmagnetoresistance in topological insulator-ferromagnet layer heterostructures”, Nature communications, 9 (1): 111 (2018), Y. Lv, J. Kally, D. Zhang, J. S. Lee,M. Jamali, N. Samarth and J. P. Wang, http://dx.doi.org/10.1038/s41467-017-02491-3

“Efficient In-Memory Processing Using Spintronics”, IEEE Computer Architecture Letters, 17(1): 42-46 (2018), Z.Chowdhury, S. K. Khatamifard, M. Zabihi, J. D. Harms, Y. Lv, A. P. Lyle, S.Sapanekar, U. Karpuzcu, and J. P. Wang, http://dx.doi.org/10.1109/LCA.2017.2751042

“Minnealloy: a new magnetic material with highsaturation flux density and low magnetic anisotropy”, Journal of Physics D:Applied Physics, 50(37): 37LT01 (2017), M. Mehedi, Y. Jiang, P. K. Suri, D. J.Flannigan, and J. P.  Wang, http://dx.doi.org/10.1088/1361-6463/aa8130

“Portable GMR Handheld Platform for theDetection of Influenza A Virus”, ACS sensors, 2(11): 1594-1601 (2017), K. Wu, T. Klein, V. D. Krishna, D. Su, A. M. Perez, andJ. P.  Wang, http://dx.doi.org/10.1021/acssensors.7b00432

“Fabrication of Fe16N2 Films by SputteringProcess and Experimental Investigation of Origin of Giant SaturationMagnetization in Fe16N2”, Ieee Transactions on Magnetics, 48: 1710 (2012), J.P. Wang, N. Ji, X. Liu, Y. Xu, C. Sάnchez-Hanke, F.M.F. de Groot, Y. Wu, L. F.Allard and E. Lara-Curzio, http://dx.doi.org/10.1109/TMAG.2011.2170156

“Theory of giant saturation magnetization inα”-Fe16N2: role of partial localization in ferromagnetism of 3d transitionmetals”, New Jounral Of Physics, 12: 063032 (2010), N. Ji, X. Q. Liu, and J. P. Wang, http://dx.doi.org/10.1088/1367-2630/12/6/063032

“Direct communication between magnetic tunneljunctions for nonvolatile logic fan-out architecture”, Applied Physics Letters,97: 152504 (2010), A. Lyle, J. Harms, S. Patil, Y. F. Yao, D. Lilja and J.P.Wang, http://dx.doi.org/10.1063/1.3499427

“A Detection System Based on GiantMagnetoresistive Sensors and High-Moment Magnetic Nanoparticles DemonstratesZeptomole Sensitivity: Potential for Personalized Medicine”, Angewandte Chemie,121: 2802–2805(2009), B. Srinivasan, Y. P. Li, Y. Jing, Y. H. Xu, X. F. Yao, C.G. Xing and J. P. Wang, http://dx.doi.org/10.1002/ange.200806266

“FePt Magnetic Nanoparticles and their Assemblyfor Future Magnetic Media”, Proceedings of IEEE, Invited Paper in Special Issueon Advances of Magnetic Storage Technologies, 96: 1847(2008), J. P. Wang, http://dx.doi.org/10.1109/JPROC.2008.2004318

“Direct Gas-Phase Synthesis of HeterostructuredNanoparticles through Phase Separation and Surface Segregation”, AdvancedMaterials, 20: 994 (2008), Y. Xu and J. P. Wang, http://dx.doi.org/10.1002/adma.200602895

“Exchange Coupled Composite Media forPerpendicular Recording”, IEEE Transactions on Magnetics, 41: 3138 (2005), J. P. Wang, W. K. Shen and J. M. Bai,  http://dx.doi.org/10.1109/TMAG.2005.855278

“A Spintronics Full Adder for MagneticCPU”, IEEE Electron Device Letters, 26: 360 (2005), H. Meng, J. Wang, and J. P. Wang, http://dx.doi.org/10.1109/LED.2005.848129

“Spin transfer in nanomagnetic devices with perpendicular anisotropy”, APPLIED PHYSICS LETTERS 88 (17): 172506 (2006), H. Meng and J. P. Wang, http://dx.doi.org/10.1063/1.2198797