

UNIVERSITY OF MINNESOTA	
Power delivery challenges	
 Each layer draws current from the power grid Power pins at the extreme end tier(s) 	
 Simple analysis Current(3D)/Current(2D) = m 	Layer 5
 <i>m</i> = # layers Let R_{grid} = resistance of power grid V_{drop} = Current × R_{orid} 	Layer 4
m times worse for 3D!	Layer 3
 And this does not account for Increased effective R_{grid} Leakage power effects, increased current 	Layer 2
 Power bottleneck: a major problem for 3D 	Layer 1
	Bulk Substrate
	4

Swdecap Value	WITH PASSIN Resonant Suppression	/e damp Equivalent Passive Decap	ING Decap Boost
100pF	2.2dB	500pF	5X
200pF	5.5dB	1500pF	7.5X
300pF	9.8dB	3500pF	11X

UNIVERSITY OF MINNESOTA										
3D bonchmarks										
SD Deliciliarias										
 Exercised on GSRC floorplanning benchmarks 										
Large	est floorplan h	as 300 m	odules							
Com	narison with (slow)simu	ilated anneali	na metho	h					
		510 11 / 511110		ing method	4					
Laver	WastedPowe	<u>er</u> (%)	Maximum IR N	loise (mV)	Runtime (sec)					
Layer	UsefulPowe Partition-Based	Annealing	Partition-Based	Annealing	Partition-Based	Annealing				
n100Layer0	3.3	3.1	52.8	62.0	0.03	80				
n100Layer1	3.1	3.8	28.9	42.5	0.02	80				
n100Layer2	3.7	5.7	45.4	54.6	0.02	80				
n200Layer0	8.7	6.4	55.2	88.4	0.31	157				
n200Layer1	5.6	6.4	62.1	64.4	0.16	160				
n200Layer2	5.6	7.1	77.4	52.7	0.18	165				
n300Layer0	4.7	4.5	61.1	56.0	1.83	235				
n300Layer1	6.3	6.3	33.4	36.8	0.69	236				
n300Layer2	5.4	4.6	46.5	39.5	0.77	236				
Durating Companiant, 10 ³ v anadum aver CA										
Kuntime comparison: > 10° x speedup over SA										
						20				

UN	UNIVERSITY OF MINNESOTA Experimental results														
	Ckt	# Noc	des	Worst V droop (V)			# nodes with noise violations			V	Violation Area S (V ns)				
	lbm123	18,6	34	0	.135			3	330			1:	3.739		
	lbm05	12,02	26	0	.122			1	359			72.260			
	ibm08	17,03	30	0	.125			3191				41.305			
	ibm10	29,20	62	0.159				5935				91.286			
	ibm18	75,04	42	0.163				6392				108.649			
CMOS only		only Decan #Ite	#Iter Time maxC aveC I			M only			maxC	CMOS + MIM			Tima		
- 1	(V-n	s) (mA)	(pF)	(s)	(%)	(%)	(pF)	#1021	(s)	(mA)	(%)	(%)	(pF)	#1101	(s)
ibm	123 368 0.02 105 24 0.04	3 2.1 9 2.7	564 25 480 5	24	15.8	3.9	607 550	23	59 111	2.1	8.4	1.7	628 546	4 22	43 109
ibm	08 31 0.01	0 1.2 2 1.6	417 12	108	30.6	5.9	511	24 11	134	0.6	4.5	2.5	520	20	116
ibm	18 130 0.07	1 2.7	698 14	400	39.5	5.3	812	9	339	1.4	7.0	3.6	826	8	307
_															
															26

