
A Fast Global Gate Collapsing Technique for High Performance

Designs using Static CMOS and Pass Transistor Logic �

Yanbin Jiangy, Sachin S. Sapatnekar z and Cyrus Bamji�

y Department of ECE, Iowa State University, Ames, IA 50011 (ybjiang@iastate.edu)
z Department of ECE, University of Minnesota, Minneapolis, MN 55455 (sachin@ece.umn.edu)

� Cadence Design Systems, San Jose, CA 95052 (cyrus@cadence.com)

Abstract

A new design methodology for mapping circuits is
discussed in this paper. It proposes two new techniques
for mapping circuits. The �rst method, known as the
odd-level transistor replacement (OTR) method, has
a goal that is similar to that of technology mapping,
but without the restriction of a �xed library size. The
second technique, the Static/PTL method, uses a mix
of static CMOS and pass transistor logic (PTL) to re-
alize the circuit, using the relation between PTL and
binary decision diagrams. The methods are very ef-
�cient and can handle all of the ISCAS85 benchmark
circuits in minutes. A comparison of the results with
traditional technology mapping using SIS on di�erent
libraries shows an average delay reduction about 40%
for OTR, and an average delay reduction above 50%
for the Static/PTL method.

1 Introduction

Technology mapping has been a cornerstone in the
logic synthesis process and this area has been well
studied in the past. Existing technology mapping
techniques can be classi�ed into four categories: rule-
based mapping [5], graph matching [6], direct map-
ping [7] and functional mapping [8]. Traditional meth-
ods for technology mapping are directed towards a
speci�c library and are targeted towards objectives
such as minimizing the circuit delay, minimizing the
area and reducing the power dissipation. Using a
pre-characterized library methodology has the inher-
ent major disadvantage that the quality of the results
is dependent on the richness of the library.

�This work was supported in part by a Lucent Technologies

DAC Graduate Scholarship and the National Science Foundation

under contracts MIP-9502556 and MIP-9796305.

In our work, individual complex gates are generated
on the
y, instead of using a pre-characterized library.
The translation of this new gate to a layout can be per-
formed using a module generator. The design method-
ology, shown in Figure 1, can be extended to work with
the traditional methodology, so that in case a library is
available, the complex gates may be implemented us-
ing either the cells in the given library or the virtual
library.

Technology-independent
Optimized netlist

Library
Module

Physical Layout Design

Generator

Global Gate Collapsing

Figure 1. New design methodology.

The focus of this paper is on the gate collapsing
phase which is the basis for this new design method-
ology; this is the phase where the complex gates are
generated. The discussion about the module generator
for layout of the complex gates is beyond the scope of
this paper.

The essential idea of gate collapsing is to begin with
a decomposition of the circuit and then to combine or
collapse these simple gates into more complex gates.
Our procedure works on a virtual library that is as-
sumed to have all types of cells so that the global
gate collapsing technique can have the full
exibility
of �nding the optimum possible combination of stan-
dard gates in a network.

The input to global gate collapsing comes from the
output of technology-independent optimization, and
the result of the procedure is a network where the input
netlist is collapsed into an optimal set of complex gates
corresponding to that decomposition. In this work, we
consider gate collapsing on the circuit using two forms
of logic styles: complex static CMOS gates, and pass
transistor logic (PTL).

The matching method of traditional technology
mappers such as MIS [2] cannot be applied on the vir-
tual library since the number of possible templates is
far too large. Therefore, this paper develops techniques
for generating the complex gates for the virtual library.
We propose two methods for this purpose:

� Topological mapping: Odd-level transistor re-
placement (OTR) for mapping to complex static
CMOS gates

� Boolean functional mapping: Using binary deci-
sion diagrams (BDD's) to map logic to pass tran-
sistor logic.

The organization of the paper is as follows. The �rst
technique for gate collapsing, called the OTR method,
is described in Section 2. Next, we consider the prob-
lem of mixed static/PTL mapping in Section 3. Ex-
perimental results are presented in Section 4, followed
by concluding remarks in Section 5.

a

b

c

d

G1

G2

G3

G4

G5

G6

G7

a

b

c

d

ap

an

bp

bn

cp

cn

dp

dn

G1

G2

G3

G4

G5

G6

G7

(a) (b)

Figure 2. A circuit for gate collapsing.

2 Odd-level Transistor Replacement
(OTR) Method

2.1 An Example

We will now present a method for building complex
gates, based on a simple topological technique that per-
mits subcircuits with an odd number of gate levels to
be collapsed into a single complex gate.

ap

bp

an
bn

c

d

c dn

p

p

n

G5’ G6’

an bn

cn dn

ap

bp

cp

dp

a

bc

d

G7’

(a)

(b)

Figure 3. The OTR gate collapsing procedure.

The basic idea of the OTR method is to use the
pull-down (pull-up) transistor structure from the gates
at the previous level gates to replace the pull-up (pull-
down) transistors of the gates at the next level. To
illustrate this, consider the circuit in Figure 2(a) con-
sisting of gates G1 through G7. This structure has 20
transistors in all, and a transistor-level version is shown
in Figure 2(b).

We use the pull-down (pull-up) transistors in G1 and
G2 to replace the pull-up (pull-down) transistors in G5
to obtain the gate G5', a nontraditional static CMOS
gate, shown in Figure 3(a). Similarly, the transistors in
G3 and G4 are inserted into G6 to get another nontra-
ditional static CMOS gate, G6'. We treat these non-
traditional gates as intermediate synthesis stages and
we will eliminate them in the next step by performing

2

the same operation, replacing the pull-down (pull-up)
block of G7 by the pull-up (pull-down) blocks of the
intermediate gates G5' and G6', respectively. The de-
tailed illustration of the �nal collapsed gate is shown
in Figure 3(b). Note that the �nal implementation has
only 8 transistors, a transistor count reduction of 60%.

From the principle illustrated in this example, it is
easy to see that if we collapse an even number of levels
of gates, we will be left with a nontraditional static
CMOS gate, whereas if we collapse an odd number of
levels, we will return to the traditional CMOS complex
gate structure, and therefore we call this technique the
odd-level transistor replacement (OTR) method.

2.2 Delay Estimation

The delay is characterized in the look-up table as
a function of the switching position, transistor size,
input slope S, and loading capacitance C. We as-
sume in our implementation that each transistor in a
gate has the same size. This makes the task of lay-
out easier, and compacts the size of the look-up table.
Some further improvements are possible by allowing
transistors to be sized individually. Our experimental
results show that even under our implementational as-
sumption, substantial area/performance improvements
are possible. Moreover, the theoretical framework pre-
sented here can be extended to the case of nonuniform
sizes.

Given a switching position and a transistor size, a
traditional look-up table is a two-dimensional array of
values parameterized by S and C, as shown in Fig-
ure 4(a). This table requires a large amount of memory

x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x

C

S

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

C

S

Delay Equation

Equation

Equation

Equation
Data

q
u
a
t
i
o
n

E

E
q
u
a
t
i
o
n

E
q
u
a
t
i
o
n

(b) Refined Table(a) Traditional Table

Figure 4. Look-up tables.

which can make the look-up speed slow since it is im-
possible to store all such tables for all possible switch-
ing positions and transistor sizes in the cache or in the

RAM. In order to re�ne this look-up table method, we
compact the information in this table into a delay char-
acteristic delay equation for each such two-dimensional
array. For purposes of characterization, we �nd a least-
squares �t to the characteristic delay equation from [10]
which is of the type used by Synopsys:

D = � � S + � � C +
 � S � C + !

where �, �,
, ! are constants. However, if we at-
tempt to �nd a single delay equation for the entire ta-
ble, the accuracy of the characterization may be poor.
Therefore, we use a set of equations that capture the
information embedded in a subset of the data, ensuring
that the accuracy of each such �t is within a prescribed
range, �. The entire data can be �tted accurately to a
small set of delay equations, and any data points that
have an error larger than � from the set of equations
are stored as pure data. The overall structure of the
storage is as shown in Figure 4(b).

The procedure for �nding the values of �; �;
 and !
requires a least-squares minimization of the following
form:

minF =
X

i

[(� � Si + � � Ci +
 � Si � Ci + !)�Di]
2

where the summation is performed over all SPICE-
measured data points i, and Ci; Si andDi, respectively,
denote the load capacitance, slope and delay corre-
sponding to the ith data point. This unconstrained
minimization can be performed by setting the partial
derivatives of F with respect to each of the parameters
to zero, i.e., @F

@�
= 0; @F

@�
= 0; @F

@

= 0; @F

@!
= 0.

We solve the above system of linear equations to �nd
the values of �; �;
 and !.

2.3 Outline of the Algorithm

We now present a dynamic programming based ap-
proach to solve the problem of area/power minimiza-
tion under delay constraints. In Section 5, we show the
results of applying this technique to �nd the minimum
delay, but the method can equally well be used to solve
the constrained optimization problem.

To understand the di�culty of this problem, we ob-
serve that technology mapping, a special case of global
gate-collapsing, is known to be NP-complete for di-
rected acyclic graph structures [6]. A technique that
has been routinely and successfully used in technology
mapping is to decompose a DAG into a set of trees
and to perform mapping on those trees (for example,
in [3, 6]), with the trees being selected in such a way
that they are all rooted at gates with multiple fanouts

3

or at gates at the primary output. We persist with this
approach in our work.

The algorithm is based on dynamic programming
and uses OTR combinations to generate possible com-
plex gates. As in [3], we begin with a 2-input NAND
gate decomposition of the circuit, though we empha-
size that any other initial circuit can also be used. The
pseudocode for the algorithm is shown below:

Algorithm Outline

Input: Initial circuit decomposed into

inverters and 2-input NAND gates.

Output: Optimum network of complex gates.

f
levelize the circuit

find roots

sort roots

from primary inputs to primary outputs

for each root generate tree

apply dynamic programming

for each node in the tree from leaf nodes

to the root

find all possible collapsing solutions

store non inferior solutions

[Area, Delay]

find optimum solution based on all

generated noninferior states

g

The dynamic programming procedure [4] proceeds
by associating a set of states with each node, where a
node corresponds to a gate output. A state corresponds
to a partial solution that corresponds to a possible con-
�guration of collapsed gates for the subtree rooted at
that node. The state information for each node is a
pair [Area,Delay], calculated from the primary inputs
up to that node. The complex gates are chosen so that
the number of series-connected mosfets on a path to
Vdd or ground does not exceed a user-speci�ed number
k.

Dynamic programming proceeds by enumerating the
possible states at a node, and eliminating all partial
solutions at each step that are provably suboptimal.
Finally, when all noninferior states have been enumer-
ated, the optimal state is chosen and the corresponding
circuit con�guration is determined.

3 Combined Static CMOS/
Pass Transistor Logic Design

3.1 Fundamentals

In this section, we develop techniques for the synthe-
sis of circuits with a combination of static CMOS and
PTL and present a procedure that partitions a circuit
into static CMOS and PTL to achieve the minimum
delay.

In dealing with PTL, a designer must be aware of
the following limitations:
(1) For an nMOS (pMOS) transistor, the low-to-high
(high-to-low) transition is imperfect and therefore PTL
cannot achieve full voltage swings, resulting in reduced
noise margins.

X

Y

F
Gnd

Vdd

Figure 5. An example of a sneak path.

(2) It is possible for sneak paths between Vdd and
ground to exist unless the circuit is designed carefully.
An example of sneak paths is shown in Figure 5: if
X = 1 and Y = 0 at the same time, then F is connected
to connect both power supply and ground simultane-
ously.

F

G H

X A

B

0 1

0

1

10

F

A A

B B

F

Vss

Vss
Vdd

(b)

F

X

G H

X

(a) (c) (d)

Figure 6. Circuit example.

Pass transistors can be used to build a 2-input multi-
plexer, leading to a one-to-one correspondence between
BDD's and their PTL implementations. Since a BDD
can represent any logic function, we can use the BDD
representation to directly arrive at a PTL implemen-
tation of a complex gate. In Figure 6, we show the
correspondence between a BDD node and a pass tran-
sistor, build the BDD representation for the 2-input
AND gate, and arrive at the pass transistor implemen-
tation of the BDD. Figure 6(a) shows a BDD node
whose PTL implementation is shown in Figure 6(b).
Using this as a basis for design, we take the BDD in

4

Figure 6(c), representing a two-input AND gate, and
build the the corresponding PTL implementation as
shown in (d).

3.2 Outline of the Algorithm

The dynamic programming approach for gate col-
lapsing proposed in Section 2.4 is extended to give us a
technique for building mixed static/PTL circuits. The
basic idea is to use BDD's to represent a candidate
logic function that can be implemented in PTL during
dynamic programming. The implementation uses the
BDD package described in [1].

In using PTL, as in the case of complex static gates,
we must ensure that the number of pass transistors in
series should be no more than a predetermined number
p. In other words, while generating BDD's, we do not
permit the depth of the BDD to become larger than
p, and at that point, we force the use of a static gate
at the fanout. The �nal circuit is likely to contain
pieces of pass transistor logic that are isolated from
each other by static CMOS gates. The purpose of the
static CMOS gates is to isolate the pass-transistor parts
and to restore the level of degraded signals.

The dynamic programming approach here is used
to determine how the circuit should be partitioned be-
tween static CMOS and PTL implementations, with
OTR-based gate collapsing being used for the static
CMOS segment. In our current implementation, we
use a PTL delay model that is similar to that used
for the static CMOS logic, with the constants being
altered. However, we stress that more complex and ac-
curate delay models can also be incorporated into the
optimizer.

For both the OTR and the static/PTL methods, we
need to build complex gates, either in static form or
as PTL. Suppose that for each node, it is possible to
build C possible complex gates, that a complex gate
can have a maximum of I inputs, and that each node
can have up to M [Area, Delay] pairs stored during
dynamic programming. Therefore, for each node, the
amount of computation for calculating the [Area, De-
lay] pairs is O(C � I � M). In general, C and I are
bounded, and so the computation complexity can be
written as O(M). Since the dynamic programming
technique handles each of theN gates in the circuit, the
computation complexity of our algorithm is O(N �M).

4 Experimental Results

The methods described in this paper were both im-
plemented in C on a SUN Sparc 1/170 workstation. For
purposes of comparison, results were generated using

SIS [9], OTR (Section 2) and mixed-static CMOS/PTL
methods (Section 3) on the ISCAS'85 benchmark cir-
cuits. The circuits were �rst decomposed into inverters
and 2-input nand gates network using SIS. Next, we
performed a minimum circuit delay technology map-
ping in SIS for the circuits using the libraries nand-
nor.genlib, mcnc.genlib and lib2.genlib. The libraries
are modi�ed and recharacterized under our SPICE pa-
rameters to have three cells of each type. We set the
the values of the parameters k and p (described in Sec-
tions 2.4 and 3.3, respectively) to 4 in our work.

A comparison of the results of SIS and OTR, shows
that that OTR provides better results than SIS re-
sults, with average delay reductions of over 40%, and
area reductions of around 10%. A comparison of Static
CMOS/PTL results with the results of SIS and OTR
show much greater performance enhancements from
the use of PTL in the circuits. The average delay re-
duction is about 50% and the area reduction above 70%
over the results of SIS.

These results are indicative of the the power of our
technique, and it is important to note that SIS simply
cannot work in our new design methodology because
as it cannot work on a virtual library, and requires all
allowable gates to be listed and characterized in the
library, which could be a prohibitive overhead. Our
methods are fast and the largest ISCAS85 circuit can
be handled in minutes.

5 Conclusion

We have presented the idea of global gate collapsing
for pure static CMOS designs, and of using BDD's to
realize mixed technology design using a combination of
static CMOS and PTL. Our goal has been to present
a general technique for performing overall circuit op-
timization using purely topological and Boolean func-
tional techniques for static CMOS and small BDD's for
PTL. The results obtained show that both techniques
are very fast and show signi�cant improvements over
existing approaches.

Acknowledgements

The authors would like to thank Ruchir Puri, Leon
Stok and Daniel Brand for the discussion about the
pass-transistor logic work.

References

[1] K. S. Brace, R. L. Rudell, and R. E. Bryant. Ef-
�cient implementation of a bdd package. Proceed-

5

Table 1. Experimental Results of SIS and OTR Methods
Circuit nand-nor.genlib mcnc.genlib lib2.genlib OTR method

Minimum Area CPU Minimum Area CPU Minimum Area CPU Minimum Area CPU
Delay(ns) (unit) Time(ns) Delay(ns) (unit) Time(s) Delay(ns) (unit) Time(s) Delay(ns) (unit) Time(ns)

C432 50.68 8072 10.6 45.97 7640 16.3 43.29 7824 14.1 24.53 3354 4.86

C499 39.11 13880 16.8 36.66 12640 27.4 32.59 13088 23.8 24.15 6912 7.93

C880 35.91 10808 13.1 33.36 10652 22.8 31.82 10255 21.2 24.08 5573 6.99

C1355 43.12 16192 19.0 40.93 16752 30.9 38.35 17594 28.2 24.99 7392 7.87

C1908 52.64 19696 24.3 47.75 18464 37.6 41.07 20405 33.2 30.07 11004 13.49

C2670 50.30 26416 31.5 44.19 23008 57.1 38.77 21688 59.2 30.41 16098 22.29

C3540 71.86 27328 46.8 65.38 29328 74.4 60.24 31264 65.7 52.36 21600 29.30

C5315 66.52 59024 73.0 64.10 56088 129.1 60.83 51042 107.5 35.50 35670 60.31

C6288 197.47 54886 78.1 195.65 54762 143.7 192.66 53792 129.3 100.66 28992 23.83

C7552 61.32 62680 155.3 55.49 59936 371.2 51.15 57224 292.3 28.96 43896 70.02

Avg. Imp. 42.3% 43.2% 37.7% 41.2% 32.3% 41.0%

Table 2. Experimental Results of SIS and PTL Methods
Circuit nand-nor.genlib mcnc.genlib lib2.genlib Static CMOS/PTL method

Minimum Area CPU Minimum Area CPU Minimum Area CPU Minimum Area CPU
Delay(ns) (unit) Time(ns) Delay(ns) (unit) Time(s) Delay(ns) (unit) Time(s) Delay(ns) (unit) Time(ns)

C432 50.68 8072 10.6 45.97 7640 16.3 43.29 7824 14.1 19.24 1372 190.90

C499 39.11 13880 16.8 36.66 12640 27.4 32.59 13088 23.8 19.50 3098 196.66

C880 35.91 10808 13.1 33.36 10652 22.8 31.82 10255 21.2 19.18 2432 168.50

C1355 43.12 16192 19.0 40.93 16752 30.9 38.35 17594 28.2 20.77 3450 376.49

C1908 52.64 19696 24.3 47.75 18464 37.6 41.07 20405 33.2 25.28 4753 296.05

C2670 50.30 26416 31.5 44.19 23008 57.1 38.77 21688 59.2 26.75 5980 621.61

C3540 71.86 27328 46.8 65.38 29328 74.4 60.24 31264 65.7 36.20 9059 887.46

C5315 66.52 59024 73.0 64.10 56088 129.1 60.83 51042 107.5 25.92 11601 990.18

C6288 197.47 54886 78.1 195.65 54762 143.7 192.66 53792 129.3 88.33 14403 1306.02

C7552 61.32 62680 155.3 55.49 59936 371.2 51.15 57224 292.3 21.74 18350 1093.61

Avg. Imp. 54.0% 76.2% 50.3% 75.4% 46.0% 75.4%

ings of the ACM/IEEE Design Automation Con-
ference, pages 40{45, 1990.

[2] R. Brayton, E. Detjens, S. Krishna, T. Ma,
P. McGeer, L. Pei, N. Phillips, R. Rudell, R. Se-
gal, A. Wang, R. Yung, and A. Sangiovanni-
Vincentelli. Multiple-level logic optimization sys-
tem. Proceedings of the International Conference
on Computer-Aided Design, pages 356{359, 1986.

[3] K. Chaudhary and M. Pedram. A near opti-
mal algorithm for technology mapping minimiz-
ing area under delay constraints. Proceedings
of ACM/IEEE Design Automation Conference,
pages 492{498, 1992.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to algorithms. McGraw-Hill Book
Company, New York, New York, 1990.

[5] D. Gregory, K. Bartlett, A. de Geus, , and
G. Hachtel. Socrates: A system for automatically
synthesizing and optimizing combinational logic.
Proceedings of the 23rd Design Automation Con-
ference, pages 79{85, 1986.

[6] K. Keutzer. Dagon: technology binding and lo-
cal optimization by dag matching. Proceedings
of ACM/IEEE Design Automation Conference,
pages 341{347, 1987.

[7] M. Lega. Mapping properties of multi-level logic
synthesis operations. Proceedings of the IEEE
International Conference on Computer Design,
pages 257{260, 1988.

[8] F. Mailhot and G. DeMicheli. Technology map-
ping using boolean matching and don't care sets.
Proceddings of the European Design Automation
Conference, pages 212{216, 1990.

[9] E. M. Sentovich, K. J. Singh, L. Lavagno,
C. Moon, R. Murgai, A. Saldhana, H. Savoj, P. R.
Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli. SIS: A system for sequential circuit
synthesis. Technical Report UCB/ERL M92/41,
Electronics Research Laboratory University of Cal-
ifornia at Berkeley, Berkeley, CA, May 1992.

[10] D. F. Wong. A fast and accurate technique to op-
timize characterization tables for logic synthesis.
Proceedings of the ACM/IEEE Design Automa-
tion Conference, pages 337{340, 1997.

6

Copyright 1998 IEEE. Published in the Proceedings
of ICCD'98, 5-7 October 1998 in Austin, Texas. Per-
sonal use of this material is permitted. However, per-
mission to reprint/republish this material for advertis-
ing or promotional purposes or for creating new collec-
tive works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in
other works, must be obtained from the IEEE. Contact:
Manager, Copyrights and Permissions / IEEE Service
Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway,
NJ 08855-1331, USA. Telephone: + Intl. 732-562-3966.

7

