
A Scaled Random Walk Solver for Fast Power Grid Analysis ∗†

Baktash Boghrati, Sachin Sapatnekar
University of Minnesota, Minneapolis, MN, USA.

{baktash, sachin}@umn.edu

ABSTRACT

The analysis of on-chip power grids requires the solution of
large systems of linear algebraic equations with specific prop-
erties. Lately, a class of random walk based solvers have been
developed that are capable of handling these systems: these are
especially useful when only a small part of the original system
must be solved. These methods build a probabilistic network
that corresponds to the power grid. However, this construction
does not fully exploit the properties of the problem and can re-
sult in large variances for the random walks, and consequently,
large run times. This paper presents an efficient methodology,
inspired by the idea of importance sampling, to improve the
runtime of random walk based solvers. Experimental results
show significant speedups, as compared to naive random walks
used by the state-of-the-art random walk solvers.

I. INTRODUCTION

The supply network is a critical part of any integrated circuit,
and is responsible for delivering supply currents and maintain-
ing a stable supply level that is at or near Vdd (or ground). Vari-
ations in the supply voltage level in nanometer-scale circuits
can result in significant performance fluctuations and unpre-
dictability. To ensure correct operation, it is essential to solve
the supply network analysis problem efficiently.

We consider the problem of analyzing Vdd grids here; the
problem associated with ground grids corresponds to a variable
translation and is equivalent. The power grid equations are:

GV = E, (1)

where G ∈ �n×n is the left hand side matrix, V ∈ �n is
the vector of unknowns, and E ∈ �n is the right hand side
vector. Then G is symmetric, i.e., the (i, j)th element of G,
gij = gji ∀ 1 ≤ i, j ≤ n, and diagonally dominant, i.e.,
gii ≥

∑
j,j �=i | gij |.

The size of the power grid in a modern processor is ex-
tremely large. Several approaches have been proposed in the
past, including direct methods, those incorporating hierarchy
[1] and multigrid schemes [2], iterative methods, and random
walk methods [3]. It is often necessary to analyze only a part of
this network as changes are made to the system. Of the above
methods, random walk methods have the distinction of permit-
ting localized analysis, i.e., solving a small number of nodes in
the network without solving the entire network: this is a prob-
lem that direct and iterative solvers are incapable of handling as

∗This work was supported in part by the NSF under award CCR-0634802.
†978-3-9810801-7-9/DATE11/ c© 2011 EDAA

efficiently. This problem rises in different stages of the VLSI
chip design, for example, within the design loop a change in the
network is applied and the solution of that portion is of interest
only. Random walk based solvers, due to their locality prop-
erty, make it possible to solve for nodes in the network without
solving for the entire system.

Early implementations of the random walk scheme for power
grids were based on new insights into the Doyle and Snell [4]
model with new efficiencies when an entire network is to be
solved [3], and then recognizing that this approach was essen-
tially an approximate LU factor computation [5].

The novelty of this paper is in pointing out that even in ap-
plying random walks to solve a single node (depending on the
scenario, this analysis may be the problem to be solved, or may
be a unit problem in the solution of the entire grid), further effi-
ciencies are possible. The solution draws upon some key char-
acteristics of power grids: first, that in any reasonably designed
grid that is to be analyzed, the solutions at all nodes are very
similar in value, and second, that for the most part (and for
DC analysis in particular), the directionality of current loads
from the functional blocks is similar, drawing current from the
power network (or delivering current into the ground network).
In other words, the entries of the right hand side vector, E, are
greater than or equal to zero: this is true in practice for DC anal-
ysis, and also for AC analysis, even in the presence of package
inductances, which are handled as in [6].

In general, the performance of a naı̈ve random walk method
may be improved by guiding the randomness in a productive
direction [7, 8]. In this work, we develop a heuristic method
inspired by Importance Sampling (IS) [9], a variance reduction
technique, to reduce the runtime of the random walk solver,
while maintaining the level of accuracy. The idea behind the
IS method, as discussed in more detail in Section II. C, is to
modify the distribution of the naı̈ve random walks so that the
metric provided by each walk, referred to as its gain, is ap-
proximately the same. The change in the distribution causes a
bias in the solution which is compensated for, using a weighted
average scheme, and is referred to as scaling.

II. BACKGROUND

A. Random Walk Method

We briefly review the random walk method in the context
of power network analysis. Consider a node i in a power net-
work, connected by resistors to each neighboring node j =
1, · · · , degree(i) by a conductance γij , and with a grounded
current source at i, Ii (possibly of value 0). Let vt be the volt-
age at any node t in the network. The application of Kirchhoff’s

current law, Kirchhoff’s voltage law, and the device equations
implies:

∑degree(i)
j=1 γij(vj − vi) + Ii = 0. The terms in this

equation can be rearranged as:

vi =
degree(i)∑

j=1

γij

Γi
vj +

Ii

Γi
(2)

where Γi =
∑degree(i)

j=1 γij . Equation (2) implies that the volt-
age of node i is a weighted sum of the voltages of its neighbors.
Due to diagonal dominance, all weights lie between 0 and 1,
and the sum of the weights is less than 1 (and equal to 1 if we
add in conductances to ground at i). For a power grid that has
N non-VDD nodes, we may write N equations of this form,
one for each node. The solution of this system of N equations
provides the exact solution to Equation (1).

The random walk framework is based on an analogy between
this system of equations and a random walk game on a network
of roads. The nodes in this network have a one-to-one corre-
spondence with those in the power grid. Nodes that are con-
nected by resistors in the power grid are connected by roads in
this network. At a given node, the probability, p ij , of taking a
specific road maps on to the corresponding weight, γ ij/Γi, for
the edge (Equation (2)). Each node has a motel that charges a
motel cost of mi = Ii/Γi when visited. The nodes that corre-
spond to fixed voltages vi (e.g., VDD or ground nodes) provide
a reward of vi, and are called home nodes.

A system of equations defined by Equation (2), for all i, can
be modeled as a random walk game on this network of roads,
where the walker goes from node i to its adjacent node j with
probability pij and pays a motel cost, mi, at each visited node.
The walk terminates when the walker arrives at a home node.

For a node of interest, i, a random walker starts with zero
money and a credit card that allows motel costs to be charged
until a reward is obtained for reaching a home node. We define
this amount for each random walk as the gain of that walk.
Then the expected value of the gain, v i, over all walks that
begin at node i is given by

vi =
degree(i)∑

j=1

pijvj + mi (3)

It is easy to see that this equation and Equation (2) corre-
spond exactly. The notation, vi, is overloaded to denote both
the average gain of the random walk and the voltage of the
node, precisely because the two are identical, i.e., the expected
value of the walk gain, given that the walk started from node i,
maps directly to the voltage at node i.

The expected value of vi from the random walk can be esti-
mated by running a sufficiently large number of random walks
from i and calculating the average result to get the estimated
voltage of node i without solving for any other node within the
network. If the number of walks from i is M i, then:

vi =
1

Mi

Mi∑
k=1

V k
i (4)

where V k
i is the walk gain in the kth random walk. We refer to

this approach as the naı̈ve simulation approach. This approach

is always unbiased [7] since vi = EP [Vi] where Vi is the ran-
dom variable with probability mass function (PMF) P k

i equal
to the probability of kth random walk in Equation (4), which
is equal to the product of the transition probabilities of the k th

random walk starting from node i. Next we will see how this
naı̈ve approach can be modified to reduce its variance using
importance sampling.

B. The Notion of Importance Sampling

The idea behind the IS method, as discussed in more de-
tail in Section II. C, is to modify the distribution of the na ı̈ve
random walks so that the gain of each walk is approximately
the same. The change in the distribution causes a bias in the
solution which is compensated for, using a weighted average
scheme, and is referred to as scaling.

Figure 1 shows a portion of a graph on which random walks
are run. For both the naı̈ve and the optimally scaled game, each
vertex in the graph represents a node in the power network. The
edges are annotated with a set of transition probabilities (only
two of which are actually shown in the figure), and the dashed
edges represent connections to the rest of the network.

p1 p2

v = 6v1 = 2 v2 = 10

(a)

p̂1 p̂2

v̂ = 6v̂1 = 6 v̂2 = 6

(b)

Fig. 1. Example of the (a) naı̈ve and (b) optimally scaled random walk games.

In the random walk game, the walker must to thoroughly
inspect vertices on either side of v, i.e., the walks that start
with transitions to v1 and those that first go to v2. For the naı̈ve
game, the walks through v1 will have an average gain of v1 =
2 (equal to its solution), while those through v2 will have an
average gain of v2 = 10. This indicates that the variance of the
data samples that are averaged to compute v may be large.

In the ideal optimally-scaled game shown in Figure 1(b), the
left hand side matrix is modified such that the solution of all the
nodes are equal to (or practically, close to) 6. Regardless of the
direction chosen, the average walk gain will be the same and
equal to 6. If this is true at each node, the walk gain will have
zero variance. Hence, the stopping criterion will kick in much
more quickly since the samples have lower variance. In order
to permit this change, as we will soon see, the probabilities of
the corresponding edges must be changed from the naı̈ve game
and scaling factors must be employed.

C. The Theory of Importance Sampling

Importance sampling is based on the observation that:

vi = EQi [Vi] =
∑

k

V k
i Qk

i

=
∑

k

(
V k

i

Qk
i

Q̂i
k

)
Q̂i

k
= EQ̂i

[ViLi] (5)

where Q̂i
k
Qk

i > 0, ∀k. The terms Qi and Q̂i are PMFs of the
random variable Vi in the naı̈ve and scaled problem, respec-
tively, and V k

i denotes the kth sample of Vi with probability
Qk

i and Q̂k
i , in the naı̈ve and scaled problem, respectively.

The term Lk
i = Qk

i /Q̂k
i is called the likelihood ratio [7].

For the random walk solver for linear equations, the condition

Q̂i
k
Qk

i > 0, ∀k ensures that the structure (roads connecting the
motels) of the random walk game is preserved.

For a suitable Q̂i
k
, we can modify Equation (4) using Equa-

tion (5) to form a new unbiased estimator for v i as [7]:

v̂i =
1

Mi

Mi∑
k=1

V k
i Lk

i (6)

where the probability of the random walks is guided by Q̂k
i ,

and hence the notation v̂i. The variance of this estimator is [7]:

σ2
v̂i

=
EQ̂[(ViLi)2] − v2

i

Mi
=

µ2
Q̂
− v2

i

Mi
(7)

where µ2
Q̂

is the second moment of the estimator ViLi and Li is

a function of k as defined above. If Q̂i is chosen appropriately,
v̂i will have significantly lower variance than vi. In the optimal
case, IS can achieve exactly zero variance, where the optimal
choice of the PMF Q̂i is given by:

Q̂k
i = V k

i Qk
i /vi (8)

If V k
i Lk

i = vi, ∀k, i.e., all walk gain samples are the same,
from Equation (7), we have zero variance, which leads to Equa-
tion (8). The name “importance sampling” refers to the notion
that Q̂k

i is proportional to the amount of contribution of the k th

walk on the average walk gain, i.e., its importance.
It is clear that since this optimal choice requires some knowl-

edge of vi, and since vi is the unknown that we are trying to
compute, zero variance is impractical. However, this intuition
is the founding idea of our proposed heuristic.

III. FAST RANDOM WALK SOLVER

A. Scaled Random Walks

Our fast random walk solver is a heuristic technique, in-
spired by IS, to speedup the random walk solver for power net-
work analysis. The essential idea of the approach is to modify
the transition probabilities, pij , in Equation (3) such that the
solution of all the nodes in the network is equal to α and use
scaling factors, sij , to find the solution, vi, to node i. The
scaled form of Equation (3) can be written as:

vi =
degree(i)∑

j=1

p̂ijsijvj + mi (9)

where p̂ij (analogous to Q̂i in Section II. C) denotes the new
modified transition probabilities, sij (analogous to Li) denotes
the scaling factors corresponding to roads from node i to its
neighbor j, and mi is the motel cost at node i as in Equation (3).
In the language of IS, the random walks that are constructed

using Equation (3) provide an estimate of v i while those cor-
responding to Equation (9) (we will shortly define them) are
denoted by v̂i; both represent the voltage of node i.

Note that that for Equation (9) to model the same equations
as (2) and (3), we must have:

sij =
{

1, i = j
pij/p̂ij, i �= j

Clearly, p̂ij and pij both must be valid probabilities that lie
between 0 and 1, and therefore s ij ≥ 0. Moreover, for the
structure of the random walks to be intact, required for the IS
to be valid as discussed in Section II. C, we must have sij > 0
and pij × p̂ij > 0.

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

p̂1, s1

p̂

2 , s

2

p̂3, s3

p̂4, s4

p̂
5
,s

5

m1 m2

m3 m4 m5

0

0vi

Fig. 2. An example of a scaled random walk game, with a highlighted path
showing a walk of length N = 6.

Figure 2 shows an example of a graph on which the random
walk game may be executed. The home nodes are indicated
by the shaded circles and the rest of the vertices are the motel
nodes. The highlighted path shows a walk of length N = 6
starting from vertex vi, as the walker takes to reach a home
node. The cost of the rth motel node is reflected by mr and the
home rewards are all zero. The modified probabilities and the
scales in the graph are shown by p̂r and sr, respectively.

The scaled random walk from node v i, similar to the naı̈ve
game, starts with zero money and a credit card on which debt
may be racked up. In the scaled walk, the walker accumulates
a multiplier on the way, which models the scaling scheme. On
the first transition the walker pays the price of the motel, m1,
and a road is picked with probability p̂1; the value of the multi-
plier is set to s1. Next, the second transition is chosen and the
motel costs are paid – but due to the accumulated multiplier,
the amount to be paid is not m2 but s1 × m2. The multiplier
changes to s1 × s2, so that the motel cost at the third transition
is s1 × s2 × m3, the multiplier is s1 × s2 × s3, and so on.
The walker keeps paying and accumulating new terms in the
multiplier until a home node is reached, where a reward (also
scaled by the multiplier) is received. Therefore, the total gain
of a walk of length N can be written as:

V̂ k
i = m1 + s1m2 + s1s2m3 + · · · +

N−1∏
r=1

srmN (10)

where r denotes the motels visited along the way from node
i, and k denotes that this is the kth walk among the Mi walks
performed to estimate vi. The result of this walk is included in
an average that is used to estimate vi:

v̂i =
1

Mi

Mi∑
k=1

V̂ k
i (11)

As in [3], the number of walks, Mi, required for getting the
solution with the desired tolerance is determined dynamically
based on the estimated solution and its variance at each point
in the random walk game such that the error is smaller than a
user defined threshold with a confidence of 99%.

B. Computing the Scaling Factors

The scaling factors in Section III. A give us the freedom to
modify the road probabilities, p̂ij , and yet find the solution to
the original equation using Equation (10). A key unanswered
issue is the choice of scaling factors. The IS approach suggests
that we choose the p̂ij such that every walk has a gain of α,
where α is to be selected to get a feasible random walk and the
best possible speedup. Based on this, we will now present a set
of results that show how these factors may be computed.

Theorem 1 For a system of linear equations defined by Equa-
tion (9), if sijvj is at a constant value of α for all neighbors j
of node i, and the value of vi is also α then:

1 −
degree(i)∑

j=1

pij/sij = mi/α (12)

Proof: Based on the conditions shown above, we have:

α =
degree(i)∑

j=1

p̂ijα + mi (13)

Substituting pij/sij for p̂ij , we have the result. �
The conditions of Theorem 1 state that:

sij =
α

vj
(14)

For a Vdd grid, the values of all node voltages are roughly sim-
ilar in magnitude for a reasonable candidate power grid: the
variations of a well-designed grid are within 10% of Vdd. In
a use case where such an analyzer is being applied to the in-
ner loop of an optimizer (e.g., one that sets the optimal wire
widths in the grid), it is likely that for any candidate configura-
tion, the voltage values may differ by more than 10%, but not
by orders of magnitude. Therefore, since the v j values are sim-
ilar in magnitude, it is a reasonable approximation to assume
that sij = si, ∀j. Note that we will use this approximation
only to reorient the probabilities in the original random walk
game for importance sampling. Therefore, by the definition
of importance sampling, this approximation does not affect the
correctness of the random walks, but only the variance of the
samples, and hence the convergence speed.

The quality of this approximation is directly related to the
amount by which the variance may be reduced. If a power grid
has a catastrophic fault that causes its voltage to be very far
from Vdd, this may not be a good solution, but it is an excel-
lent choice within an optimizer where realistically, most of the
candidate solutions have voltages close to Vdd.
Corollary 1 Under the assumptions that sij = si ∀j, the scal-
ing factor si can be computed as:

si =
1

1 − mi/α

degree(i)∑
j=1

pij (15)

The proof is trivial and follows directly from Theorem 1.
Corollary 1 provides a recipe for determining the scaling fac-

tors in Equation (9). However, the parameter α has not been
precisely defined. We will now consider constraints on the fea-
sible values of α that are required to maintain the physical con-
straints associated with a random walk game.

Theorem 2 For the case where mi ≥ 0 ∀i, α satisfies the fea-
sibility and physicality of the random walk game if:

α > max
i

(mi) (16)

Proof: For all i and j, we must have:

0 < sij (17)

0 < p̂ij ≤ 1 (18)
degree(i)∑

j=1

p̂ij ≤ 1 (19)

The first condition is required to keep the structure of the ran-
dom walk game intact, as required by the IS method in Sec-
tion II. C: in other words, the graph for the original game
is isomorphic to that of the modified game. In the next two
constraints, p̂ij > 0 implies that sij is finite (i.e., it avoids a
divide-by-zero operation in Equation (10)), and the remaining
constraints are basic requirements on a PMF.

Equations (15) and (17) together imply that α > m i ∀i,
which immediately leads to Equation (16).

Equations (15) and (19) together imply that m i/α > 0. This
is self-consistent with the result of this theorem. �

Note that for the case where mi ≤ 0 ∀i (for the ground
net), a result similar to Theorem 2 may be derived: that α <
mini(mi).

C. Choosing the Value of α

Based on Theorem 2, the value of α may be chosen as

α = max
i

(mi)β, β > 1 (20)

where β is chosen empirically for the best speedup.
We now present an intuitive feel for the considerations for

choosing β. Qualitatively, β determines the probability of tran-
sition to a home node at each node of the network. The choice
of α alters probabilities pij to p̂ij , but it can be verified from
Equation (12) that in general, at any node i,

∑
i pij �= ∑

i p̂ij .
In the original circuit, typically

∑
i pij = 1 at many nodes, but

this is not the case in the modified circuit. This introduces a
new home transition probability at node i for the fast solver:

ĥi = 1 −
degree(i)∑

j=1

p̂ij =
mi

maxi(mi)β
(21)

As β increases, the home probabilities decrease and there-
fore it will be less likely for the random walker to reach a
home node. As a result, individual walk lengths increase as
β increases, and the walker spends more time exploring “far

away” parts of the network which have small contributions to
the solution due to the locality property of power grids.

On the other hand as β decreases, the home probabilities be-
come larger, making it more likely for random walks to often
terminate at nearby home nodes, even within the radius of lo-
cality. To achieve accuracy, this implies the need for a larger
number of walks, implying a larger total number of steps in the
random walk, and hence, larger runtime for the solver. Another
factor is that in order to keep mi unchanged, required by Equa-
tion (9), the edges connected to these new home nodes must
have a reward of zero, rather than Vdd. Therefore, the condi-
tions that led to sij = si∀i are somewhat violated since one
neighbor contributes a value of zero.

Experimental results empirically indicate that values of 5 ≤
β ≤ 50 give the best results. This value could change if the
topology of the benchmarks (e.g., average degree of each node)
changes, but companies tend to use a similar style from design
to design, and it is likely that this value will not change remark-
ably, once calibrated.

D. Fast Random Walks Example

In this section, we present an example to provide some in-
tuition as to how the solver works and why it reduces the vari-
ance. Figure 3 shows a simple random walk game, in both the
naı̈ve and the scaled form. In this figure, each node is rep-
resented by a vertex where the shaded vertices are the home
nodes with known values of zero. The numbers within each
vertex correspond to the motel cost at the node, and the transi-
tion probabilities are shown on the edges. The scaled game has
scale labels on the edges as well.

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����

0.6 0.30 0
p = 0.2 p = 0.8

p12 = 0.8

p21 = 0.2v1 v2

(a)

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

0.6 0.30 0
p̂ = 0.2 p̂ = 0.1

p̂12 = 0.8, s1 = 1

p̂21 = 0.9, s2 = 2
9v1 v2

(b)

Fig. 3. Simple example of the naı̈ve 3(a) and scaled 3(b) games to
demonstrate how the fast random walk solver works.

These games model the following set of equations:[
1 −0.8

−0.8 4

] [
v1

v2

]
=
[

0.6
1.2

]
(22)

where the solution is v1 = 1 and v2 = 0.5. We use β = 5 and
seek the the solution of node v1.

In the naı̈ve random walk game in Figure 3(a) the gain of the
walks started from v1 takes one of the forms:

V k
i =

{
0.6 + 0.9t
0.9(1 + t) , t = 0, 1, 2, . . . (23)

The first equation corresponds to a termination at the left home
node, and the second to a termination at the right home node.
Here, t is the number of times that the walker traverses the cy-
cle v1–v2–v1, and the walk length is 2t+1 [2t] for a termination
on the left [right] node. It is easy to see from this equation that

the walk gain increases linearly with its length, and depending
on the walk length, it falls in the interval [0.6,∞).

For the scaled random walk in Figure 3(b), some vigorous
algebraic manipulations show that the gain of the walks started
from v1 takes one of the forms:

V k
i =

{
0.9
∑t

l=0 (2/9)l

0.9
∑t

l=0 (2/9)l − 0.3(2/9)t , t = 0, 1, 2, . . . (24)

In this game, as t increases (i.e., the walk length increases), the
walk gain increases at most to 1.16. Therefore, for this scaled
game, the walk gains fall into the interval [0.6, 1.16) which has
a much smaller variance compared to the naı̈ve game.

In practice for a properly chosen β, the loop gain in this ex-
ample and total accumulated walk scale in general case will
be less than or equal to one. To see this, consider an ideal
power network with the solution of all one and the scaled game
for solving it. Comparing Equations (3) (with v i = 1) and
Equation (12) we can see that in the scaled game, the RHS
mi/α = mi/ (maxi (mi)β) ≤ mi, the RHS of the naı̈ve
game. Therefore, we must have si ≤ 1. For the general case,
the solution of the networks of interest for this work deviates
no more than, say, 20% and setting β large enough ensures the
scaling factors are less than or equal to one.

For efficiency purposes, we stop the walk as soon as the ac-
cumulated scale falls below a threshold close to machine preci-
sion since the motel costs are bounded and continuing the walk
will have no effect on the solution due to round off error.

IV. EXPERIMENTAL RESULTS

The proposed fast random walk solver and the naı̈ve random
walk solver are implemented in C++ and compared on a UNIX
machine with a 2GHz CPU and 8GB of memory. To ensure a
fair comparison, the fast random walk solver is implemented by
adding the scaling scheme into the naı̈ve solver so that the core
random walk engine is the same for both. These solvers are
applied to three benchmarks summarized in Table I. This table
represents the statistics of the LHS matrix for a DC analysis.
For each matrix, we list the size, i.e., the number of unknowns,
the number of non-zeros in G, and the average number of non-
zeros per row, as a sparsity metric.

TABLE I
BENCHMARK DETAILS: STATISTICS OF THE LHS MATRIX

Name Size Number of Average
Nonzeros Nonzeros/Row

c1 16194 98030 6.1
c2 26300 165810 6.3
c3 29551 178345 6.0

We first examine the efficiency and accuracy of the fast
solver by finding the speedup of the fast solver over the naı̈ve
solver, for the same relative error. Next we compare the statis-
tics of the walk gains for the naı̈ve and fast solver, as defined
by Equations (4) and (10), respectively, to study the variance
reduction in the fast solver. In our experiments, we focus on
the case that the solution of a single node in the network is of
interest. We pick ten nodes randomly and apply the solvers for
each of these nodes 1000 times and show that the average re-
sults are consistent for all the nodes in all the benchmarks. The
nominal voltage of the network, VDD , is 1.2V .

0 20 50 100 150 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

β

R
u

n
ti

m
e

(s
)

Naive Solver

Fast Solver

(a) Runtime

0 20 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

0.06

β

R
el

at
iv

e
E

rr
o

r

Tolerance

Naive Solver

Fast Solver

(b) Relative Error

Fig. 4. Runtime and relative error vs. β for a random node from circuit c2.

Figure 4 shows the runtime and relative error of the naı̈ve and
fast solver versus β, for the given tolerance of 5%, for a single
randomly selected node from benchmark c2. Figure 4(a) sug-
gests that for 5 ≤ β ≤ 50, the fast solver achieves a significant
speedup while the relative error, shown in Figure 4(b), remains
less than or equal to the naı̈ve solver. In Figure 4(a), the bars
on the figure denote the standard deviation of the runtime over
the 1000 runs.

2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Node Number

R
u

n
ti

m
e

(s
)

Naive Solver
Fast Solver

(a) Runtime

2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

0.06

Node Number

R
el

at
iv

e
E

rr
o

r

Tolerance

Naive Solver

Fast Solver

(b) Relative Error

Fig. 5. Runtime and relative error for 10 randomly chosen nodes (from c2)
with β = 20.

As discussed in Section III. C, the value of the parameter β is
empirically chosen. Here, we set β = 20 for our experiments.
Figure 5 shows the runtime and relative error of the solvers for
ten randomly chosen nodes from benchmark c2 with tolerance
of 5% and β = 20. In Figure 5(a) the bars on the figure show
the standard deviation of the runtime over the 1000 different
runs. It can be seen that the fast solver consistently runs faster
than the naı̈ve solver for all the nodes while the relative error
is the same. Note that it is well-known that the actual error can
be significantly below the tolerance, as seen in the figure: this
is an artifact of the choice of stopping criterion in [3].

TABLE II
RUNTIME (SEC) AND SPEEDUP OF THE FAST RANDOM WALK SOLVER FOR

TEN RANDOMLY CHOSEN NODES FROM EACH BENCHMARK FOR β = 20

Node Runtime (s) [Speedup]
c1 c2 c3

1 0.067 [1.6×] 0.176 [1.8×] 0.169 [1.3×]
2 0.070 [1.5×] 0.177 [1.7×] 0.170 [1.3×]
3 0.070 [1.5×] 0.160 [1.9×] 0.152 [1.5×]
4 0.068 [1.5×] 0.156 [2.0×] 0.152 [1.5×]
5 0.065 [1.6×] 0.152 [2.0×] 0.153 [1.5×]
6 0.064 [1.6×] 0.153 [2.0×] 0.137 [1.6×]
7 0.054 [1.9×] 0.159 [1.9×] 0.154 [1.5×]
8 0.068 [1.5×] 0.159 [2.0×] 0.153 [1.5×]
9 0.064 [1.6×] 0.159 [1.9×] 0.155 [1.4×]

10 0.055 [1.9×] 0.156 [2.0×] 0.151 [1.5×]

Average 0.065 [1.6×] 0.161 [1.9×] 0.155 [1.5×]

Details of the runtime and speedup of the fast random walk
solver are listed in Table II for all the benchmarks where ten
nodes are selected randomly from each benchmark and β = 20.
Each row represents a node number and each column repre-

sents the circuit that it comes from. This table indicates consis-
tent runtime reduction for all the benchmarks and for each of
the nodes of each benchmark.

0 1 2 3 4

x 10
4

0

2

4

6

8

Walk Length

W
al

k
G

ai
n

Naive Solver
Fast Solver

Fig. 6. Distribution of the walk gain vs. walk length (β = 20, v = 1.06).

Finally the scatter plot of Figure 6 shows the distribution of
walk gain versus walk length of the naı̈ve solver and the fast
solver, as defined by Equations (4) and (10), for a randomly
chosen node from benchmark c2 with solution of 1.06V . As
this figure indicates, the walk gain of the fast solver is much
denser around the solution than that of the naı̈ve solver. This
indicates the effectiveness of the variance reduction technique
described in Section III. D.

REFERENCES

[1] M. Zhao et al. Hierarchical analysis of power distribution
networks. In Proc. DAC, pages 150–155, 2000.

[2] J. N. Kozhaya, S. R. Nassif, and F. N. Najm. Multigrid-like
technique for power grid analysis. In Proc. ICCAD, pages
480–487, San Jose, California, 2001. IEEE Press.

[3] H. Qian, S. R. Nassif, and S. S. Sapatnekar. Random walks
in a supply network. In Proc. DAC, pages 93–98, 2003.

[4] P. G. Doyle and J. L. Snell. Random Walks and Electric
Networks. Mathematical Association of America, Wash-
ington, DC, 1984.

[5] H. Qian and S. S. Sapatnekar. A hybrid linear equation
solver and its application in quadratic placement. In Proc.
ICCAD, pages 905–909, 2005.

[6] H. Qian, S. R. Nassif, and S. S. Sapatnekar. Power grid
analysis using random walks. IEEE TCAD, 24(8):1204–
1224, August 2005.

[7] I. Kuruganti and S. G. Strickland. Importance sampling
for markov chains: computing variance and determining
optimal measures. In Proc. Winter Simulation Conference,
pages 273–280, 1996.

[8] S. Andradottir, D. P. Heyman, and T. J. Ott. Poten-
tially unlimited variance reduction in importance sam-
pling of Markov chains. Advances in applied probability,
28(1):166–188, 1996.

[9] P. W. Glynn and D. L. Iglehart. Importance sam-
pling for stochastic simulations. Management Science,
35(11):1367–1392, November 1989.

