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Abstract—In this paper, the performance of the ALOHA and
CSMA MAC protocols are analyzed in spatially distributed
wireless networks. The main system objective is correct reception
of packets, and thus the analysis is performed in terms of outage
probability. In our network model, packets belonging to specific
transmitters arrive randomly in space and time according to
a 3-D Poisson point process, and are then transmitted to their
intended destinations using a fully-distributed MAC protocol.
A packet transmission is considered successful if the received
SINR is above a predefined threshold for the duration of
the packet. Accurate bounds on the outage probabilities are
derived as a function of the transmitter density, the number of
backoffs and retransmissions, and in the case of CSMA, also the
sensing threshold. The analytical expressions are validated with
simulation results. For continuous-time transmissions, CSMA
with receiver sensing (which involves adding a feedback channel
to the conventional CSMA protocol) is shown to yield the
best performance. Moreover, the sensing threshold of CSMA
is optimized. It is shown that introducing sensing for lower
densities (i.e., in sparse networks) is not beneficial, while for
higher densities (i.e., in dense networks), using an optimized
sensing threshold provides significant gain.

Index Terms—Ad hoc networks, Poisson point process, MAC
protocols, outage probability.

I. INTRODUCTION

IN the design of wireless ad hoc networks, various tech-
niques are applied to efficiently allocate the scarce re-

sources available for the communication links. Using an ap-
propriate medium access control (MAC) protocol is one such
technique. Taking into account the system’s quality of service
(QoS) requirements, a MAC protocol for ad hoc networks
shares the medium and the available resources in a distributed
manner, and allows for efficient interference management.

In this paper, we consider a spatial network model in which
nodes are randomly distributed in space, and we address
the problem of interference through MAC layer design. The
ALOHA and CSMA MAC protocols are employed for com-
munication, and the success rate of packet transmissions is
investigated. In particular, we ask the following questions: (a)
Given a fixed signal-to-interference-plus-noise ratio (SINR)
threshold for each transmitter (TX) receiver (RX) link in the
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network, what is the probability of successful transmission
for ALOHA and CSMA, (b) can the performance of CSMA
be improved by introducing feedback between the TX and
RX and allowing the RX to make the backoff decision, and
(c) does CSMA have an optimal sensing threshold which
minimizes the outage probability (OP) for received packets?

We consider a network in which packets are located ran-
domly in space and time according to a 3-D Poisson point
process (PPP), consisting of a 2-D PPP of TX locations in
space and a 1-D PPP of packet arrivals in time. The packets,
which are assumed to be of constant length, are forwarded by
each TX over a nonfading channel to a RX a fixed distance
away. In order to derive precise results, we focus exclusively
on single-hop communication, as in [1], [2], [3]. All multi-
user interference is treated as noise, and our model uses
the SINR to evaluate the performance (in terms of OP) of
the communication system. The only source of randomness
in the model is in the location of nodes and concurrent
transmissions, which allows us to focus on the relationships
between transmission density, OP, sensing threshold, and the
choice of MAC protocol.

A. Related Work

There has been a notable amount of research done on the
performance of ALOHA in ad hoc networks. A number of
researchers have analyzed slotted ALOHA using a Poisson
model for TX locations, considering transmission capacity and
success probability of the network [2], [4], [5]. Ferrari and
Tonguz [6] have analyzed the transport capacity of slotted
ALOHA and CSMA, showing that for low transmission den-
sities the performance of slotted ALOHA is almost twice that
of CSMA. Also, it is established that CSMA is advantageous
only at high transmission densities. Other related works have
considered the performance of ALOHA and CSMA in terms of
throughput and bit error rate [6], [7], [8]. Some of these also
assert CSMA’s superiority over ALOHA, which is naturally
followed by tradeoffs in other domains such as transmission
rate and delay [8] [9]. The seminal work of Gupta and Kumar
[7] considers the transport capacity of a Poisson distributed
ad hoc network, which resembles a slotted version of our
model. However, their analysis focuses on a deterministic
SINR model, and employs a deterministic channel access
scheme, thereby precluding the occurrence of outages. Weber
et al. [5] revise this model by considering a stochastic SINR-
based model, within which they find tight lower and upper
bounds to the OP of slotted ALOHA as a function of the
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node density. We consider the model used in [5], and extend
it to also cover unslotted systems.

Despite all the research done on MAC protocols thus
far, only a limited number of works have considered an
interference channel that is both stochastic and continuous
in time [2], [4], [5], [10]. Perhaps the closest work is that
of Hasan and Andrews [4], where the success probability of
slotted ALOHA is analyzed within such a stochastic ad hoc
wireless network model. Success probability is defined as the
probability that a transmission is received successfully at the
RX. This is equal to 1−OP. In [4], a scheduling mechanism
is assumed that creates an interferer-free guard zone, which is
in effect a theoretical circle around the RX, within which no
interfering TXs are allowed. By means of geometrical analysis,
the density of successful transmissions is maximized under an
outage constraint. We adopt the concept of guard zones in our
analysis, with the difference that instead of incorporating into
the protocol a guard zone within which no TX are permitted,
we consider actual MAC protocols that employ virtual guard
zones in order to make the backoff decision and evaluate the
OP. Other analytical models may also be used for performance
evaluation [11], [12]. In [11], the throughput and fairness of
CSMA/CA is evaluated based on a Markovian analysis. In
[12], an analytical framework is introduced to evaluate the
per-flow throughput of CSMA in a multi-hop environment.
However, in both of these works, a single communication link
is considered. Thus, the complexity of various links’ perfor-
mance and decisions being inter-dependent, as in interference
channels, is ignored. This is considered in our model.

A good choice of the sensing threshold of CSMA, 𝛽𝑠𝑒𝑛𝑠,
is of great importance for its performance. In [13], the
throughput of the CSMA protocol is evaluated in a multi-hop
ad hoc network. It is shown that the optimal algorithm is to
decrease the sensing range as long as the network remains
sufficiently connected. In [14], it is claimed that in order
to maximize the spatial reuse of the network, one must set

𝛽𝑠𝑒𝑛𝑠 ≈ 𝜌
(

1 + 𝛽
1/𝛼
𝑟𝑒𝑞

)𝛼
, where 𝜌 represents the transmitted

signal strength, 𝛼 is the path loss exponent, and 𝛽𝑟𝑒𝑞 is the
minimum required SINR threshold for correct packet recep-
tion. In [15], it is shown that the optimum sensing threshold
of CSMA depends on the system design parameters, such as
the distance between a TX and its RX. The authors conclude
that to minimize the OP, senders must keep the product of
their transmit power and carrier sensing threshold equal to
a fixed constant. However, this algorithm is not distributed,
and is dependent on estimation of signal powers. Loosening
these limitations, a new sensing threshold adaptation algorithm
is proposed in [16], where each node chooses the 𝛽𝑠𝑒𝑛𝑠
that maximizes the number of successful transmissions in its
neighborhood. The drawback of this scheme is that it relies
on the collection of information from the environment over a
period of time, which entails high complexity and is not able
to handle fast variations of the interference.

The rest of this paper is organized as follows. In Section
II, we provide a detailed description of the system model.
In Sections III and IV, the OP of ALOHA and CSMA are
derived. In Section V, we allow the sensing threshold of
CSMA to vary, and find the optimal sensing threshold that

minimizes the OP. Section VI presents the numerical results,
while Section VII concludes the paper.

II. SYSTEM MODEL

As a starting point, consider a mobile wireless network in
which TXs are randomly placed on an infinite 2-D plane
according to a homogeneous PPP with spatial density 𝜆𝑠

[nodes/m2] and moving independently of each other. At each
TX, a series of packets, each with a fixed duration 𝑇 , arrives
according to an independent homogeneous 1-D PPP in time
with intensity 𝜆𝑡 [packets/sec/node]. These packets are then
sent with a constant power 𝜌 to the intended RX, which is
assumed to lie a fixed distance 𝑅 away. Futhermore, each
packet is given 𝑀 backoffs and 𝑁 retransmission attempts.
In this network model, the spatial PPP is first fixed and each
TX generates its own traffic of packets. This means that at each
time instant, the average number of new packets that are active
per unit area is 𝜆 = 𝜆𝑠𝜆𝑡𝑇 [packets/m2]. Due to the ability
to backoff from transmissions (in CSMA) and retransmit in
the case of erroneous packet reception, we have an increase
of 𝜆Δ(𝑀,𝑁) to the spatial density. Hence, the density of
packets attempting to access the channel at each time instant
is 𝜆(1 + Δ(𝑀,𝑁)). If no backoffs or retransmissions are
allowed, i.e., (𝑀,𝑁) = (1, 0), we have that Δ(𝑀,𝑁) = 0
for all the protocols. Note that the number of backoffs 𝑀 is
always strictly greater than 0.

Since this network model entails two independent Poisson
distributions, in order to derive the OP, we would have to
average over both the spatial and temporal statistics. Due to the
complicated analysis this would entail, instead we consider our
wireless network from an alternative point of view; Consider
a single queue of packet arrivals with density 𝜆𝑠𝜆𝑡𝐴, where
𝐴 is the area of the communication region. Upon the arrival
of each packet, it is assigned to a TX node, which is then
randomly placed on a 2-D plane (uniformly distributed in area
𝐴), as illustrated in Fig. 1. The transmission to the intended
RX is then initiated according to the specified MAC protocol.
When the packet has been served (successfully or not), the
corresponding TX-RX pair disappears from the plane. When
the maximum number of backoffs and retransmissions is not
reached, the packet is placed back in the packet arrival queue,
with a new transmission time. The retransmitted packet will be
located in a new position, which is justified by our assumption
on high mobility. Considering the increase in the density of
packets attempting to access the channel, we have that 𝜆 =
𝜆𝑠𝜆𝑡𝑇 (1 + Δ(𝑀,𝑁)).

Note that the temporal PPP of packet arrivals at each node
is independent of the PPP of TX locations in space. Due to
the high mobilility presumed in our network, different sets of
packets are active between times 𝑡0 and 𝑡0 + 𝑇 . Since the
waiting time from one transmission attempt to the next is set
to be greater than 𝑇 , we have that there are no spatial and
temporal correlations between retransmission attempts. This
is in accordance with the results of [17]. As a result of this
independence, and the basic properties of PPPs, we have that
the number of nodes in any random selection of an area at
any random point in time still follows a PPP [18]. Hence,
we have that our space-time model entails a 3-D PPP with
density 𝜆𝑠𝜆𝑡(1+Δ(𝑀,𝑁)) [packets/m2/sec]. Considering the
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Fig. 1. Each new packet arrival is assigned to a TX-RX pair, which is then
located randomly on a 2-D plane.

entire plane at a fixed point in time, we observe the behaviour
of the space-time model’s spatial 2-D PPP with density 𝜆 =
𝜆𝑠𝜆𝑡𝑇 (1+Δ(𝑀,𝑁)). Equivalently, the total expected number
of packets in area 𝐴 during a time interval 𝑇 is 𝜆𝑠𝜆𝑡𝐴 𝑇 (1+
Δ(𝑀,𝑁)). Thus, we see that our alternative 3-D space-time
model is a good representation of the ad hoc network initially
described, as it entails a Poisson distribution of nodes in space
and of packet arrivals in time, with the same density of packets
accessing the channel as the initial model. Hence, we adopt
this model for our analysis, as it allows us to only consider a
single random process describing both the temporal and spatial
variations of the system.

Note the following main attributes of our traffic model that
are of significance in our derivations:

∙ Our network is highly mobile, meaning that different and
independent sets of nodes are observed on the plane from
one slot (of length 𝑇 ) to the next.

∙ Upon retransmission of a packet, it is treated as a new
packet arrival and placed in a new location, resulting in
no spatial correlation between transmission attempts.

∙ The waiting time between retransmission attempts is set
to be 𝑡𝑤𝑎𝑖𝑡 > 𝑇 , which because of the high mobility
assumption, results in no temporal correlation between
retransmission attempts.

For the channel model, we consider only path loss attenua-
tion effects (with path loss exponent 𝛼 > 2), ignoring both
short term and long term fading. The channel is assumed
to be constant for the duration of a transmission. Each RX
sees interference from all active TXs on the plane, and these
interference powers are added to the channel noise, 𝜂, to result
in a certain SINR at each RX. If this received SINR falls
below the required SINR threshold, 𝛽𝑟𝑒𝑞 , at any time during
the packet transmission, the packet is received erroneously and
must be retransmitted, with probability

𝑃𝑟𝑡 = Pr

(
min
0≤𝑡≤𝑇

𝜌𝑅−𝛼

𝜂 +
∑

𝑖(𝑡) 𝜌𝑟
−𝛼
𝑖

≤ 𝛽𝑟𝑒𝑞

)
, (1)

where 𝑟𝑖 is the distance between the node under observation
and the 𝑖-th interfering TX, and the summation is over all
active interferers on the plane at time 𝑡.

The MAC protocols ALOHA and CSMA are applied

for communication between nodes. In the case of unslotted
ALOHA, each transmission starts as soon as the packet arrives,
regardless of the channel condition. Slotted ALOHA improves
the performance by removing partial outages, but this requires
synchronization. If the packet is received erroneously, it is
retransmitted. Each packet has a maximum of 𝑁 retrans-
mission attempts in order to be received correctly. In the
CSMA protocol, the channel is sensed at the beginning of
each packet. If the measured SINR is above 𝛽𝑠𝑒𝑛𝑠, the packet
transmission is initiated; otherwise, it is backed off. Each
packet is given a maximum of 𝑀 backoffs, before it is
dropped. Since evaluating the backoff scheme is outside the
scope of this work, we simply assume that the backoff times
are random, uncorrelated, and exponentially distributed (this
also maintains the Poisson distribution of packets). Once the
transmission is initiated, but the packet is received erroneously
after 𝑁 retransmissions, it is counted to be in outage. Finally,
all communication between the TX and its RX is assumed
to occur over an orthogonal control channel, and the delay
introduced by the feedback is assumed to be insignificant
compared to the packet length.

In the general sense, the OP of ALOHA and CSMA is
defined mathematically as

𝑃𝑜𝑢𝑡(ALOHA) =

Pr
[
SINR < 𝛽𝑟𝑒𝑞 at some 𝑡 ∈ [0, 𝑇 ) 𝑁 + 1 times

]
, (2)

𝑃𝑜𝑢𝑡(CSMA) = Pr
[
SINR < 𝛽𝑠𝑒𝑛𝑠 at 𝑡 = 0 𝑀 times ∪

SINR < 𝛽𝑟𝑒𝑞 at some 𝑡 ∈ (0, 𝑇 ) 𝑁 + 1 times
]
. (3)

The throughput 𝑆 of this network is given as: 𝑆 = 𝜆(1 +
Δ(𝑀,𝑁)) 𝑏 (1−𝑃𝑜𝑢𝑡) [bits/s/Hz/m2], where 𝑏 is the average
rate that a successful packet achieves, with units [bits/s/Hz
per packet]. Since the OP is the only unknown term in the
throughput expression, we will solely focus on this metric in
the remainder of this paper.

A. Justification of Assumptions

For ad hoc networks with single-hop communication links
and substantial mobility or indiscriminate node placement,
such as a dense sensor network, an assumption of Poisson
distributed nodes in space is reasonable and commonly used
[2], [3], [4]. However, in many networks, such as clustered
or multi-hop networks, this assumption might not be valid
anymore, as transmissions are often correlated with each other
in both time and space. Assuming no fading is not always
reasonable. This assumption is made because we wish to find
the OP of MAC protocols under optimal conditions, as in [4],
[5]. In [19], we add fading to our model, and derive the OP
of the various protocols. Fading is shown to deteriorate the
average performance of the network.

The assumption of fixed packet length 𝑇 is reasonable,
because in most applications, data to be transmitted is pack-
etized before transmission, and each packet is then of the
same constant length. The fixed distance, 𝑅, between all TX-
RX pairs (which is also assumed in [2], [5], [7]) is often
not a natural assumption. However, we know that for low
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Fig. 2. When at least one interferer TX1 falls within a distance 𝑠 away from
RX0, i.e., inside 𝐵(RX0, 𝑠), it causes outage for RX0.

densities, the OP is a convex1 function of 𝑅, making our OP
analysis yield a lower bound to the case when 𝑅 is variable.
Furthermore, it has been rigorously shown in [20] that variable
transmit distances do not result in fundamentally different
performances. Finally, note that the whole network with a
fixed 𝑅 could be viewed as a snapshot of a multi-hop wireless
network, where 𝑅 is the bounded average inter-relay distance
resulting from the specific routing protocol used.

III. OUTAGE PROBABILITY OF ALOHA

The ALOHA protocol is one of the simplest MAC algo-
rithms for a communication network. Here, packets are trans-
mitted to their intended RXs immediately upon their arrival,
regardless of the channel conditions. In order to analyze the
OP of ALOHA, we apply the concept of guard zones [4]. First,
define 𝑠 to be the distance between a randomly selected RX
on the plane, RX0, and its closest interfering TX that causes
the SINR to fall just below the threshold 𝛽. By manipulation
of the SINR expression, 𝑠 is derived to be:

𝑠 =

(
𝑅−𝛼

𝛽
− 𝜂

𝜌

)− 1
𝛼

. (4)

Through Eq. (4), 𝛽𝑠𝑒𝑛𝑠 corresponds to 𝑠𝑠𝑒𝑛𝑠, 𝛽𝑟𝑒𝑞 to 𝑠𝑟𝑒𝑞 ,
etc. The guard zone 𝐵(RX0, 𝑠) is a circle of radius 𝑠 around
RX0, as illustrated in Fig. 2. One situation that would cause
RX0 to go into outage is if the accumulation of powers from
all the interfering nodes outside 𝐵(RX0, 𝑠) results in the SINR
at RX0 falling below the threshold 𝛽. Another situation is if
at least one active TX, other than RX0’s own TX, TX0, falls
inside 𝐵(RX0, 𝑠) at any time during the packet transmission.
Considering only the latter event yields a lower bound to the
OP. It has previously been shown that this lower bound is in
fact fairly tight around the actual OP [5], and hence, we only
focus on this bound in our analysis.

Allowing for retransmissions is equivalent to increasing the
average number of packets that attempt to access the channel,
when the network is in a steady state. With the assumption

1Convexity may be proven by considering the second derivative of 𝑃𝑜𝑢𝑡.
𝑃𝑜𝑢𝑡 consists of a combination of error probability expressions of the form
𝑃𝑟𝑡 = 1 − 𝑒−𝑘𝑅2

, where 𝑘 is a function of 𝜆 and 𝛽. Moreover, 𝑑2𝑃𝑟𝑡
𝑑𝑅2 =

2𝑘𝑒−𝑘𝑅2
(1− 2𝑘𝑅2). This is > 0, and thus 𝑃𝑟𝑡 is convex, for 2𝑘𝑅2 < 1,

which is the case for low enough densities.

on high mobility, and by selecting the time interval from
one retransmission attempt to the next (due to a backoff or
retransmission) to be 𝑡𝑤𝑎𝑖𝑡 > 𝑇 , there is no spatial and tem-
poral correlation between the retransmission attempts. Given
the probability of a packet being retransmitted in ALOHA is
𝑃𝑟𝑡, the density of packets on the plane at each time instant
is

𝜆𝑎𝑙𝑜ℎ𝑎(𝑃𝑟𝑡) = 𝜆 (1 + 𝑃𝑟𝑡 + 𝑃 2
𝑟𝑡 + ... + 𝑃𝑁

𝑟𝑡 ) = 𝜆
1 − 𝑃𝑁+1

𝑟𝑡

1 − 𝑃𝑟𝑡
.

(5)
Applying the concept of guard zones in our ad hoc network
with spatial node density of 𝜆𝑎𝑙𝑜ℎ𝑎(𝑃𝑟𝑡), we shall now derive
the OP of slotted and unslotted ALOHA in the following.

A. Slotted ALOHA

In slotted ALOHA, the time line is divided into slots of
fixed duration 𝑇 , and TXs can only start their transmissions at
the beginning of the next time slot after each packet has been
formed. Thus there is no partial overlap of packets, something
that is intuitively expected to decrease the OP compared to
unslotted algorithms. This performance improvement comes,
however, at the expense of a need for synchronization. Since
the system is slotted, we are only concerned with the locations
of packet arrivals in each slot, which follow a homogeneous
2-D PPP with intensity 𝜆𝑎𝑙𝑜ℎ𝑎(𝑃𝑟𝑡,𝑠), where 𝑃𝑟𝑡,𝑠 is the proba-
bility that a transmission attempt is unsuccessful. By properties
of the PPP, the interferers of the node under observation also
follow a homogeneous 2-D PPP with the same intensity. This
yields the following theorem.

Theorem 1: The OP of slotted ALOHA can be lower
bounded by 𝑃 𝑙𝑏

𝑜𝑢𝑡(Slotted ALOHA) = 𝑃𝑁+1
𝑟𝑡,𝑠 , where 𝑃𝑟𝑡,𝑠

is the solution to

𝑃𝑟𝑡,𝑠 = 1 − 𝑒
−𝜆

1−𝑃
𝑁+1
𝑟𝑡,𝑠

1−𝑃𝑟𝑡,𝑠
𝜋𝑠2𝑟𝑒𝑞 . (6)

Proof: Consider the active communication link TX0-RX0.
Due to the slotting of time, only packets arriving during the
last 𝑇 seconds start simultaneously with the one generated
by TX0, and have thus the potential to result in an erroneous
packet reception at RX0. Based on the concept of guard zones,
we have that

𝔼 [# of interf. inside 𝐵(RX0, 𝑠𝑟𝑒𝑞) at some 𝑡 ∈ [−𝑇, 0)]

≈ 𝜆𝑎𝑙𝑜ℎ𝑎(𝑃𝑟𝑡,𝑠)𝜋 𝑠2𝑟𝑒𝑞, (7)

where 𝜆𝑎𝑙𝑜ℎ𝑎(𝑃𝑟𝑡,𝑠) is given by Eq. (5). The probability
of having an erroneous packet transmission in a Poisson
distributed network is 𝑃𝑟𝑡,𝑠 = 1−𝑒−𝔼[# of interferers]. Further-
more, a packet is retransmitted the 𝑘-th time if it is erroneously
received all 𝑘−1 previous attempts. Hence, a packet is counted
to be in outage if it is received erroneously on the 𝑁 -th
retransmission attempt, resulting in 𝑃 𝑙𝑏

𝑜𝑢𝑡(Slotted ALOHA) =
𝑃𝑁+1
𝑟𝑡,𝑠 .

B. Unslotted ALOHA

In unslotted ALOHA, communication is continuous in time,
i.e., packets are transmitted as soon as they are formed.
Unslotted protocols are particularly of interest in systems that
have no synchronization abilities. Intuitively, we expect the OP
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of unslotted ALOHA to exceed that of the slotted case, due to
the partial overlap of transmissions. With the same reasoning
as for slotted ALOHA, we obtain the following theorem.

Theorem 2: The OP of unslotted ALOHA can be lower
bounded by 𝑃 𝑙𝑏

𝑜𝑢𝑡(Unslotted ALOHA) = 𝑃𝑁+1
𝑟𝑡,𝑢 , where 𝑃𝑟𝑡,𝑢

is the solution to

𝑃𝑟𝑡,𝑢 = 1 − 𝑒
−2𝜆 1−𝑃

𝑁+1
𝑟𝑡,𝑢

1−𝑃𝑟𝑡,𝑢
𝜋𝑠2𝑟𝑒𝑞 . (8)

Proof: Due to the unslottedness of the system, any
transmission that started less than time 𝑇 before the start of
TX0’s transmission and up to time 𝑇 later, will be interfering
with the packet of RX0 and thus contribute to its OP. Since
the number of packet arrivals at times 𝑡0 and 𝑡0 + 𝑇 are
independent, we have that

𝑃𝑟𝑡,𝑢 = 1 − Pr
(
No TXs in 𝐵(RX0, 𝑠𝑟𝑒𝑞) during [−𝑇, 𝑇 )

)
= 1 − 𝑒−2𝜆𝑎𝑙𝑜ℎ𝑎(𝑃𝑟𝑡,𝑢)𝜋𝑠

2
𝑟𝑒𝑞 ,

where 𝑃𝑟𝑡,𝑢 is the approximate probability of an erroneous
packet reception in unslotted ALOHA, with 𝜆𝑎𝑙𝑜ℎ𝑎(𝑃𝑟𝑡,𝑢) as
given by Eq. (5). Given 𝑁 retransmissions for each packet,
the OP becomes 𝑃𝑁+1

𝑟𝑡,𝑢 .
For low densities, 𝑃𝑟𝑡,𝑠 ≈ 𝑃𝑟𝑡,𝑢, allowing us to compare

slotted and unslotted ALOHA. Applying the Taylor expansion,
we obtain that slotted ALOHA outperforms its unslotted
version by a factor of 2. This is expected and consistent with
the results obtained from the conventional model [21]. This
result is related to the fact that the space-time volume in slotted
ALOHA, 𝑉𝑠 = 𝐴𝑇 , is half of that of unslotted ALOHA,
𝑉𝑢 = 2𝐴𝑇 , as only one slot needs to be considered in the
slotted system as opposed to two in the unslotted case.

IV. OUTAGE PROBABILITY OF CSMA

Due to the poor performance of unslotted ALOHA, a
new MAC protocol, termed Carrier-Sensing Multiple Access
(CSMA), was proposed by Kleinrock and Tobagi in [9] more
than 30 years ago. By introducing channel sensing and the
ability to back off from transmissions, the performance of
wireless networks was greatly improved. Moreover, several
modifications were proposed in order to overcome the inherent
hidden and exposed node problems [9] of CSMA. By allowing
some kind of communication between the TX and its RX,
throughput improvement was achieved. In the following sub-
sections, we extend the work of [9] to consider point-to-point
wireless ad hoc networks, and we evaluate the OP performance
of CSMA.

As explained in Section II, a packet is backed off if the
measured or estimated (depending on whether the RX or TX
are sensing) SINR is below the sensing threshold, 𝛽𝑠𝑒𝑛𝑠, at
the beginning of its transmission. Up to a maximum of 𝑀
times, the packet then waits a random time before the channel
is sensed again and a new decision is made. Once initiated,
but received in error at its RX, the packet is retransmitted.
This is repeated 𝑁 times before the packet is dropped. These
properties yield the following theorem.

Theorem 3: The total OP of CSMA may be expressed as

𝑃𝑜𝑢𝑡(CSMA) = 𝑃𝑀
𝑏 + (1 − 𝑃𝑀

𝑏 ) 𝑃𝑟𝑡1 𝑃𝑁
𝑟𝑡 ; (9)

and the density of packets attempting to access the channel
is

𝜆𝑐𝑠𝑚𝑎(𝑃𝑏, 𝑃𝑟𝑡1, 𝑃𝑟𝑡) = 𝜆

[
1 − 𝑃𝑀

𝑏

1 − 𝑃𝑏
+(1−𝑃𝑀

𝑏 )𝑃𝑟𝑡1
1 − 𝑃𝑁

𝑟𝑡

1 − 𝑃𝑟𝑡

]
,

(10)
where 𝑃𝑟𝑡1 is the probability that an activated packet is
received erroneously at its first transmission attempt and must
be retransmitted, and 𝑃𝑟𝑡 is the probability of error in the
retransmission attempts. Expressions for 𝑃𝑏, 𝑃𝑟𝑡1, and 𝑃𝑟𝑡 are
derived in the following subsections.

Proof: The proof of Theorem 3 is given in Appendix A.

Due to the backoff property of CSMA, and since packets
tagged for retransmission do not perform new channel sensing,
we multiply the first term of Eq. (10) by (1 − 𝑃𝑏) to find the
density of active packets;

𝜆𝑎𝑐𝑡𝑖𝑣𝑒(𝑃𝑏, 𝑃𝑟𝑡1, 𝑃𝑟𝑡) (11)

= 𝜆

(
1 − 𝑃𝑀

𝑏 + (1 − 𝑃𝑀
𝑏 )𝑃𝑟𝑡1

1 − 𝑃𝑟𝑡
𝑁

1 − 𝑃𝑟𝑡

)
.

In this section, we assume that the sensing threshold, 𝛽𝑠𝑒𝑛𝑠,
based on which the backoff decision is made, is constant and
equal to the required SINR for correct reception of packets,
𝛽𝑟𝑒𝑞 . That is, 𝛽𝑠𝑒𝑛𝑠 = 𝛽𝑟𝑒𝑞 = 𝛽 = 0 dB, which is equivalent
to 𝑠𝑠𝑒𝑛𝑠 = 𝑠𝑟𝑒𝑞 = 𝑠 ≈ 𝑅. The value 0 dB is chosen in order
for the OP to have little dependence on the path loss exponent
𝛼.

A. CSMA with Transmitter Sensing

In the conventional CSMA protocol, which is employed in
many of today’s network standards, such as IEEE 802.11 and
802.16, the TX is the backoff decision maker. That is, when a
new packet arrives, the TX immediately measures the aggre-
gate interference power. If this is greater than

(
𝜌𝑅−𝛼

𝛽 − 𝜂
)
,

it backs off; Otherwise, it starts transmitting. Denoting this
protocol by CSMATX, its OP is established by Theorem 4.

Theorem 4: The total OP of CSMATX is given by Eq. (9),
where:

∙ 𝑃𝑏 ≈ 𝑃𝑏 is the backoff probability, and is found as the
solution to

𝑃𝑏 = 1 − 𝑒
−𝜆

(
1−𝑃𝑀

𝑏 +(1−𝑃𝑀
𝑏 )𝑃𝑟𝑡1

1−𝑃𝑁
𝑟𝑡

1−𝑃𝑟𝑡

)
𝜋𝑠2

, (12)

∙ 𝑃𝑟𝑡 ≈ 𝑃𝑏 + (1−𝑃𝑏)𝑃
𝑇𝑋
𝑑𝑢𝑟𝑖𝑛𝑔 is the probability that an ac-

tivated packet is received erroneously in a retransmission
attempt, with 𝑃𝑑𝑢𝑟𝑖𝑛𝑔 being the probability that the error
occurs at some 𝑡 ∈ (0, 𝑇 );

𝑃𝑇𝑋
𝑑𝑢𝑟𝑖𝑛𝑔 = 1 − 𝑒

− ∫ 𝑠
𝑠−𝑅

𝜆𝑐𝑠𝑚𝑎

[
2𝜋−2 cos−1

(
𝑟2+𝑅2−𝑠2

2𝑅𝑟

)]
𝑟 𝑑𝑟

,
(13)

with 𝜆𝑐𝑠𝑚𝑎 = 𝜆𝑐𝑠𝑚𝑎(𝑃𝑏, 𝑃𝑟𝑡1, 𝑃𝑟𝑡) as given by Eq. (10).
∙ 𝑃𝑟𝑡1 ≈ 𝑃𝑟𝑥∣𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 + (1 − 𝑃𝑟𝑥∣𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡)𝑃

𝑇𝑋
𝑑𝑢𝑟𝑖𝑛𝑔 is

the probability that an activated packet is received
erroneously at the first transmission attempt, with
𝑃𝑟𝑥∣𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 being the probability that the RX is in
outage upon the packet arrival, given its TX decides to
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transmit;

𝑃𝑟𝑥∣𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 (14)

= 𝑃𝑏

[
1 − 1

𝜋𝑠2

(
2𝑠2 cos−1

(
𝑅
2𝑠

)−𝑅𝑠

√
1 − 𝑅2

4𝑠2

)]
.

Proof: The proof of Theorem 4 is given in Appendix B.

Due to the inter-dependence between 𝑃𝑏, 𝑃𝑑𝑢𝑟𝑖𝑛𝑔 , and
𝜆𝑐𝑠𝑚𝑎, their values are found through numerical iterations.
Also, the reason Eqs. (12)-(14) are approximations is that the
concept of guard zones is used to derive a lower bound, while
the assumption that all new interferers ignore each other and
make their backoff decision based on TX0 only, increases
the OP above the lower bound. This is discussed further in
Appendix B.

The OP of CSMATX is due to the hidden and exposed
node problems. The hidden node problem occurs when a
new interferer TX𝑖 is located inside 𝐵(RX0, 𝑠)∩𝐵(TX0, 𝑠),
where TX0 is hidden to TX𝑖, during all the 𝑁 retransmission
attempts of the packet of TX0-RX0. However, compared to
unslotted ALOHA, CSMATX improves the OP by avoiding
transmissions inside 𝐵(TX0, 𝑠)∩𝐵(RX0, 𝑠). The area of this

region is 𝐴 = 2𝑠2 cos−1
(
𝑅
2𝑠

)−𝑅𝑠

√
1 − ( 𝑅2𝑠)2. The exposed

node problem occurs when TX𝑖 backs off in cases when its
transmission would not have contributed to any outage, i.e.,
when TX𝑖 is located inside 𝐵(TX0, 𝑠)∩𝐵(RX0, 𝑠) during all
the 𝑀 backoffs. This adds to the OP of unslotted ALOHA.
Hence, we have that

𝑃𝑜𝑢𝑡(CSMATX) ≈ 𝑃𝑜𝑢𝑡(Unslotted ALOHA) (15)

− (1 − 𝑒−𝜆𝑎𝑐𝑡𝑖𝑣𝑒𝐴
)𝑁

+
(

1 − 𝑒−𝜆𝑎𝑐𝑡𝑖𝑣𝑒(𝜋𝑠
2−𝐴)

)𝑀
,

where 𝜆𝑎𝑐𝑡𝑖𝑣𝑒 is given by Eq. (11). This approximation works
best for low densities, i.e., when 𝜆𝑎𝑐𝑡𝑖𝑣𝑒 ≈ 𝜆𝑎𝑙𝑜ℎ𝑎.

To better understand the behavior of the backoff probability,
let w.l.o.g. (𝑀,𝑁) = (1, 0). 𝑃𝑏 can then be expressed in terms
of the Lambert function, 𝑊0(⋅) [1]. Let 𝑥 = 𝜆𝜋𝑠2 in Eq. (12),
and apply l’Hopital’s rule:

lim
𝑥→0

1 − 1
𝑥𝑊0(𝑥)

1 − 𝑒−𝑥
= lim

𝑥→0

𝑥−𝑊0(𝑥)

𝑥(1 − 𝑒−𝑥)

= lim
𝑥→0

1 − 𝑑𝑊0(𝑥)
𝑑𝑥

1 − 𝑒−𝑥 + 𝑥𝑒−𝑥

= lim
𝑥→0

𝑒𝑊0(𝑥) + 𝑥− 1

(𝑒𝑊0(𝑥) + 𝑥) [𝑒−𝑥(𝑥− 1) + 1]

= lim
𝑥→0

1

[𝑒−𝑥(𝑥−1)+1] + 𝑒𝑊0(𝑥)+𝑥

𝑒𝑊0(𝑥) 𝑑𝑊0(𝑥)
𝑑𝑥 +1

[−𝑒−𝑥(𝑥−1)+𝑒−𝑥]

=1.

This proves that as 𝜆 → 0, 𝑃𝑏 → 𝑃𝑜𝑢𝑡(Slotted ALOHA).
Equivalently, for a fixed backoff probability 𝑃 𝑏, we have
that the density of active packets in CSMA is 𝜆𝑎𝑐𝑡𝑖𝑣𝑒 =
𝜆𝑎𝑙𝑜ℎ𝑎(𝑃𝑟𝑡,𝑠)

1−𝑃 𝑏
. For low 𝑃𝑏, 𝜆𝑎𝑐𝑡𝑖𝑣𝑒 ≈ 𝜆𝑎𝑙𝑜ℎ𝑎, while as 𝑃𝑏

increases, the density of active transmissions in CSMA may
no longer be approximated by that of ALOHA. Due to the
reduced number of interferers, 𝑃𝑏 is less than the case when
all prior arrivals are activated. Hence, while Eq. (12) is an

approximate measure of 𝑃𝑏, Eq. (6) operates as an upper
bound.

B. CSMA with Receiver Sensing

With the objective of improving the performance of CSMA,
we introduce a novel protocol, termed CSMARX. In this pro-
tocol, the RX senses the channel and subsequently determines
whether or not the packet transmission should be initiated. The
communication between the TX and RX is assumed to occur
over a separate 1 bit control channel, and the delay introduced
by the feedback is assumed to be small and insignificant
compared to the packet length. The OP of CSMARX is given
by the following theorem.

Theorem 5: The total OP of CSMARX is given by Eq. (9),
where:

∙ 𝑃𝑏 ≈ 𝑃𝑏 is the backoff probability, found as the solution
to Eq. (12); 𝑃𝑟𝑡1 ≈ 𝑃𝑅𝑋

𝑑𝑢𝑟𝑖𝑛𝑔 , given below;
∙ 𝑃𝑟𝑡 ≈ 𝑃𝑏 + (1 − 𝑃𝑏)𝑃

𝑅𝑋
𝑑𝑢𝑟𝑖𝑛𝑔 is the probability that an

activated packet is received erroneously some time during
its transmission and must thus be retransmitted;

𝑃𝑅𝑋
𝑑𝑢𝑟𝑖𝑛𝑔 = 1−𝑒

(
−∫ 𝑠

𝑠−𝑅

∫ 2𝜋−𝜈(𝑟)

𝜈(𝑟)
𝜆𝑐𝑠𝑚𝑎𝑃 (active∣𝑟,𝜙)𝑟 𝑑𝜙 𝑑𝑟

)
,

(16)
where 𝜆𝑐𝑠𝑚𝑎 = 𝜆𝑐𝑠𝑚𝑎(𝑃𝑏, 𝑃𝑟𝑡1, 𝑃𝑟𝑡) is given by Eq.
(10), and 𝑃 (active∣𝑟, 𝜙) and 𝜈(𝑟) are:

𝑃 (active∣𝑟, 𝜙) = 1 − 1

𝜋
cos−1

(
𝑟2+2𝑅2−𝑠2−2𝑅𝑟 cos𝜙
2𝑅
√
𝑟2+𝑅2−2𝑅𝑟 cos𝜙

)
,

𝜈(𝑟) = cos−1
(
𝑟2 + 2𝑅𝑠− 𝑠2

2𝑅𝑟

)
. (17)

Proof: The proof of Theorem 5 is given in Appendix C.

The OP of CSMARX is due to the hidden node problem,
which occurs when an interferer is located inside 𝐵(RX0, 𝑠),
while its RX is located in 𝐵(TX0, 𝑠). This is discussed further
in Sections V-B and VI.

V. OPTIMIZING THE SENSING THRESHOLD

Our objective in this section is to optimize the sensing
threshold, 𝛽𝑠𝑒𝑛𝑠, of CSMA in its various incarnations, in order
to minimize the OP. In the analysis thus far, we have used a
constant sensing threshold, namely 𝛽𝑠𝑒𝑛𝑠 = 𝛽𝑟𝑒𝑞 = 𝛽 = 0
dB. In this section, we take into account variations in 𝛽𝑠𝑒𝑛𝑠
(translating to 𝑠𝑠𝑒𝑛𝑠 by Eq. (4)). For the sake of readability of
the formulas, we denote 𝑠𝑠𝑒𝑛𝑠 by 𝑠. Initially, we assume that
𝛽𝑟𝑒𝑞 stays constant (w.l.o.g., we assume that 𝛽𝑟𝑒𝑞 = 0 dB,
which corresponds to 𝑠𝑟𝑒𝑞 ≈ 𝑅), while 𝛽𝑠𝑒𝑛𝑠 varies. Next,
in Section V-C, we set 𝛽𝑠𝑒𝑛𝑠 = 𝛽𝑟𝑒𝑞 , and allow both the
thresholds to vary.

We consider both CSMATX and CSMARX, and derive their
OPs based on the following subsections.

A. CSMA with Transmitter Sensing

When 𝑠 varies, it results in changes in the area of
𝐵(TX0, 𝑠). This impacts 𝑃𝑏, 𝑃𝑟𝑡1, and 𝑃𝑟𝑡, as seen below.

Theorem 6: The total OP of CSMATX for varying sensing
thresholds is given by Eq. (9), where:
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𝑃𝑇𝑋
𝑑𝑢𝑟𝑖𝑛𝑔 =

⎧⎨
⎩

1 − 𝑒

−𝜆𝑐𝑠𝑚𝑎

[∫ 𝑅−𝑠

0

2𝜋 𝑟 𝑑𝑟 +

∫ 𝑠𝑟𝑒𝑞

𝑅−𝑠

[
2𝜋 − 2 cos−1

(
𝑟2+𝑅2−𝑠2

2𝑅𝑟

)]
𝑟 𝑑𝑟

]
; 𝑠 < 𝑅

1 − 𝑒
−𝜆𝑐𝑠𝑚𝑎

∫ 𝑠𝑟𝑒𝑞

𝑠−𝑅

[
2𝜋 − 2 cos−1

(
𝑟2+𝑅2−𝑠2

2𝑅𝑟

)]
𝑟 𝑑𝑟

;𝑅 ≤ 𝑠 < 𝑅 + 𝑠𝑟𝑒𝑞

0 ; otherwise

(18)

𝑃𝑟𝑥∣𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 =

⎧⎨
⎩

𝑃𝑟𝑥 − 𝑃𝑟𝑥
𝑠2

𝜋𝑠2𝑟𝑒𝑞
cos−1

(
𝑅2+𝑠2−𝑠2𝑟𝑒𝑞

2𝑅𝑠

)
− 𝑃𝑟𝑥

1

𝜋
cos−1

(
𝑅2+𝑠2𝑟𝑒𝑞−𝑠2

2𝑅𝑠𝑟𝑒𝑞

)
+

𝑃𝑟𝑥
2𝜋𝑠2𝑟𝑒𝑞

√
(𝑠 + 𝑠𝑟𝑒𝑞 −𝑅)(𝑠− 𝑠𝑟𝑒𝑞 + 𝑅)(−𝑠 + 𝑠𝑟𝑒𝑞 + 𝑅)(𝑠 + 𝑠𝑟𝑒𝑞 + 𝑅) ; 𝑠 < 𝑅 + 𝑠𝑟𝑒𝑞

0 ; otherwise

(19)

𝑃𝑅𝑋
𝑑𝑢𝑟𝑖𝑛𝑔 = (20)⎧⎨
⎩

1 − 𝑒
−𝜆𝑐𝑠𝑚𝑎

[∫ 𝑠
0

∫ 2𝜋
0

𝑃 (active∣𝑟,𝜙)𝑟𝑑𝜙𝑑𝑟+2∫ 𝑠𝑟𝑒𝑞
𝑠

∫ 𝜁(𝑟)

𝜈(𝑟)
𝑃 (active∣𝑟,𝜙)𝑟 𝑑𝜙𝑑𝑟+

∫ 𝑠𝑟𝑒𝑞
𝑠

[2𝜋−2(𝜁(𝑟)−𝜈(𝑟))]𝑟 𝑑𝑟
]

; 0 < 𝑠 < 𝑅

1 − 𝑒
−𝜆𝑐𝑠𝑚𝑎

[∫
2𝑅−𝑠
0

∫
2𝜋
0

𝑃 (active∣𝑟,𝜙)𝑟 𝑑𝜙 𝑑𝑟+∫ 𝑠𝑟𝑒𝑞
2𝑅−𝑠

∫ 2𝜋−𝜈(𝑟)

𝜈(𝑟)
𝑃 (active∣𝑟,𝜙)𝑟 𝑑𝜙𝑑𝑟

]
;𝑅 ≤ 𝑠 < 2𝑅

1 − 𝑒
−𝜆𝑐𝑠𝑚𝑎

∫ 𝑠𝑟𝑒𝑞
𝑠−2𝑅

∫ 2𝜋−𝜈(𝑟)

𝜈(𝑟)
𝑃 (active∣𝑟,𝜙)𝑟 𝑑𝜙 𝑑𝑟

; 2𝑅 ≤ 𝑠 < 2𝑅 + 𝑠𝑟𝑒𝑞

0 ; otherwise

∙ 𝑃𝑏 ≈ 𝑃𝑏 is given by Eq. (12); and 𝑃𝑟𝑥 = 1 −
𝑒−𝜋𝜆𝑎𝑐𝑡𝑖𝑣𝑒𝑠

2
𝑟𝑒𝑞 is the approximate probability that the RX

is in outage upon arrival in each retransmission attempt
with 𝜆𝑎𝑐𝑡𝑖𝑣𝑒 given by Eq. (11).

∙ 𝑃𝑟𝑡 ≈ 𝑃𝑟𝑥 + (1 − 𝑃𝑟𝑥)𝑃𝑇𝑋
𝑑𝑢𝑟𝑖𝑛𝑔 is the probability that an

activated packet is received erroneously in a retransmis-
sion attempt, with 𝑃𝑑𝑢𝑟𝑖𝑛𝑔 being the probability that the
error occurs at some 𝑡 ∈ (0, 𝑇 ). This is given by Eq.
(18).

∙ 𝑃𝑟𝑡1 ≈ 𝑃𝑟𝑥∣𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 + (1 − 𝑃𝑟𝑥∣𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡)𝑃
𝑇𝑋
𝑑𝑢𝑟𝑖𝑛𝑔 is

probability that the first transmission is erroneous, with
𝑃𝑟𝑥∣𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 being the probability that the RX is in
outage at the start of the packet. This is given by Eq.
(19).

Proof: The proof of Theorem 6 is given in Appendix D.

Optimizing the sensing threshold in CSMATX yields an
optimal tradeoff between the hidden and exposed node prob-
lems, as also mentioned in Section IV-A. An increase in one
problem (by changing 𝑠) leads to a decrease in the other, and
vice versa. This is discussed further in Section VI.

B. CSMA with Receiver Sensing

In this section, we wish to improve the performance of
CSMARX by optimizing the sensing threshold. Following a
similar analysis as in Section IV-B, we establish the following
theorem.

Theorem 7: The total OP of CSMARX for varying sensing
thresholds is given by Eq. (9), where:

∙ 𝑃𝑏 ≈ 𝑃𝑏 is given by Eq. (12); 𝑃𝑟𝑥 is given in Theorem
6; and

∙ 𝑃𝑟𝑡 ≈ 𝑃𝑟𝑥 + (1 − 𝑃𝑟𝑥)𝑃𝑇𝑋
𝑑𝑢𝑟𝑖𝑛𝑔 is the probability that an

activated packet is received erroneously in a retransmis-
sion attempt, with 𝑃𝑑𝑢𝑟𝑖𝑛𝑔 being the probability that the
error occurs at some 𝑡 ∈ (0, 𝑇 ). This is given by Eq. (20),
where 𝑃 (active∣𝑟, 𝜙) and 𝜈(𝑟) are given by Eq. (17), and

𝜁(𝑟) = cos−1
(
𝑟2−2𝑅𝑠−𝑠2

2𝑅𝑟

)
.

∙ 𝑃𝑟𝑡1 ≈ 𝑃𝑟𝑥∣𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 + (1 − 𝑃𝑟𝑥∣𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡)𝑃
𝑅𝑋
𝑑𝑢𝑟𝑖𝑛𝑔 is the

probability that the first transmission attempt is erro-
neous, with 𝑃𝑟𝑥∣𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 being the probability that the
RX is in outage at the start of the packet;

𝑃𝑟𝑥∣𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 =

{
𝑃𝑟𝑥

[
1 − 𝑠2

𝑠2𝑟𝑒𝑞

]
; 𝑠 < 𝑠𝑟𝑒𝑞

0 ; otherwise
(21)

Proof: The proof of Theorem 7 is given in Appendix E.

Our simulation results indicate that the optimal sensing
threshold in CSMARX is 𝛽𝑠𝑒𝑛𝑠 = 𝛽𝑟𝑒𝑞 (equivalent to
𝑠𝑠𝑒𝑛𝑠 = 𝑠𝑟𝑒𝑞). To understand this, consider w.l.o.g. the case
of (𝑀,𝑁) = (1, 0), simplifying Eq. (9) to

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑜𝑢𝑡(CSMARX) (22)

=

{
𝑃𝑟𝑥 + (1 − 𝑃𝑟𝑥) 𝑃𝑅𝑋

𝑑𝑢𝑟𝑖𝑛𝑔 ; 𝑠 < 𝑠𝑟𝑒𝑞

𝑃𝑏 + (1 − 𝑃𝑏) 𝑃𝑅𝑋
𝑑𝑢𝑟𝑖𝑛𝑔 ; otherwise

Based on this, we now evaluate the rate of change of the
different sources of outage, namely 𝑃𝑏 and 𝑃𝑅𝑋

𝑑𝑢𝑟𝑖𝑛𝑔 .

∙ When 𝑠 < 𝑠𝑟𝑒𝑞:

𝑑𝑃𝑡𝑜𝑡𝑎𝑙
𝑑𝑠

= [1 − 𝑃𝑟𝑥]
𝑑𝑃𝑅𝑋

𝑑𝑢𝑟𝑖𝑛𝑔

𝑑𝑠
. (23)

Since 𝑃𝑟𝑥 is only a function of 𝑠𝑟𝑒𝑞 , its derivative
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Fig. 3. The setup used in Section V-B to illustrate the rate of increase in
𝑃𝑏 and decrease in 𝑃𝑑𝑢𝑟𝑖𝑛𝑔 as 𝛽 increases.

with respect to 𝑠 is 0. 𝑃𝑅𝑋
𝑑𝑢𝑟𝑖𝑛𝑔 on the other hand is a

monotonically decreasing function of 𝑠, which can be
observed by considering Fig. 3. As 𝑠 increases with
𝑑𝑠, the areas A and C shrink. As the decrease in these
areas has a greater impact on 𝑃𝑅𝑋

𝑑𝑢𝑟𝑖𝑛𝑔 than the increase
in area B (because in A and C, 𝑃 (active∣𝑟, 𝜙) = 1),
we get a decrease in 𝑃𝑅𝑋

𝑑𝑢𝑟𝑖𝑛𝑔 . Intuitively, this means
that an increase in 𝑠 results in more protection for an
arriving TX-RX pair, resulting in a higher rate of backoff.
Consequently, due to the reduced number of interferers,
there is a smaller probability that a packet transmission
goes into outage once it has been activated. Hence,
𝑑𝑃𝑡𝑜𝑡𝑎𝑙

𝑑𝑠 < 0 for 𝑠 < 𝑠𝑟𝑒𝑞.
∙ When 𝑠 ≥ 𝑠𝑟𝑒𝑞:

𝑑𝑃𝑡𝑜𝑡𝑎𝑙
𝑑𝑠

=
[
1 − 𝑃𝑅𝑋

𝑑𝑢𝑟𝑖𝑛𝑔

] 𝑑𝑃𝑏
𝑑𝑠

+
[
1 − 𝑃𝑏

] 𝑑𝑃𝑅𝑋
𝑑𝑢𝑟𝑖𝑛𝑔

𝑑𝑠
.

(24)
When 𝑠 increases by 𝑑𝑠, 𝐵(RX0, 𝑠) grows and so does
𝑃𝑏. The rate of this increase is:

𝑑𝑃𝑏
𝑑𝑠

≈ 𝜋(𝑠 + 𝑑𝑠)2 − 𝜋𝑠2

𝜋𝑠2
=

𝑑𝑠2 + 2𝑠 𝑑𝑠

𝑠2
. (25)

𝑃𝑅𝑋
𝑑𝑢𝑟𝑖𝑛𝑔 , on the other hand, decreases with 𝑠. This change

may be approximated by the decrease in the area around
RX0 within which the occurrence of an interferer would
cause outage, given by:

𝑑𝑃𝑅𝑋
𝑑𝑢𝑟𝑖𝑛𝑔

𝑑𝑠
≈
(
𝜋𝑠2𝑟𝑒𝑞− 𝜋(𝑠+𝑑𝑠−𝑅)2

3

)− (𝜋𝑠2𝑟𝑒𝑞− 𝜋(𝑠−𝑅)2

3

)
𝜋𝑠2𝑟𝑒𝑞

= −2(𝑠−𝑅)𝑑𝑠 + 𝑑𝑠2

3𝑠2𝑟𝑒𝑞
. (26)

To obtain the sign of 𝑑𝑃𝑡𝑜𝑡𝑎𝑙

𝑑𝑠 , we make some approxi-
mations. Since 𝑑𝑠 ≪ 1, we set (𝑑𝑠)2 ≈ 0. Also, since
𝛽𝑟𝑒𝑞 = 1, and the noise is small, we have 𝑠𝑟𝑒𝑞 ≈ 𝑅. The
largest rate of decrease of Eq. (26) is when 𝑠 = 𝑠𝑟𝑒𝑞 +𝑅.

This yields ∣𝑑𝑃
𝑅𝑋
𝑑𝑢𝑟𝑖𝑛𝑔

𝑑𝑠 ∣ ≈ 1
3𝑠𝑟𝑒𝑞

< 1
2𝑠𝑟𝑒𝑞

≈ ∣𝑑𝑃𝑏

𝑑𝑠 ∣.
Hence, since for all 𝑠 ≥ 𝑠𝑟𝑒𝑞, ∣𝑑𝑃

𝑅𝑋
𝑑𝑢𝑟𝑖𝑛𝑔

𝑑𝑠 ∣ < ∣𝑑𝑃𝑏

𝑑𝑠 ∣ and

(1 − 𝑃𝑏) ≤ (1 − 𝑃𝑅𝑋
𝑑𝑢𝑟𝑖𝑛𝑔), we have that 𝑑𝑃𝑡𝑜𝑡𝑎𝑙

𝑑𝑠 > 0 for

𝑠 ≥ 𝑠𝑟𝑒𝑞.

Thus, we conclude that the OP of CSMARX is minimized
for 𝛽𝑜𝑝𝑡𝑠𝑒𝑛𝑠 = 𝛽𝑟𝑒𝑞 (i.e., 𝑠𝑜𝑝𝑡𝑠𝑒𝑛𝑠 = 𝑠𝑟𝑒𝑞). Note that the reduction
in the OP by using 𝛽𝑜𝑝𝑡𝑠𝑒𝑛𝑠 is more evident at higher densities,
as will be discussed in Section VI.

C. Dependence of OP on the Required SINR Threshold

In this section, we assume that both the sensing threshold
and the required SINR threshold are varying, while at the same
time remaining equal, i.e., 𝛽𝑠𝑒𝑛𝑠 = 𝛽𝑟𝑒𝑞 = 𝛽 (equivalently
𝑠𝑠𝑒𝑛𝑠 = 𝑠𝑟𝑒𝑞 = 𝑠). The total OP of CSMATX is then found
by replacing 𝑠𝑟𝑒𝑞 by 𝑠 in Theorem 6, with the following
differences:

∙ The approximate probability that the RX is in outage at
the start of its first transmission attempt, is:

𝑃𝑟𝑥∣𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 = (27)⎧⎨
⎩
𝑃𝑟𝑥 ; 𝑠 < 𝑅

2

𝑃𝑟𝑥

[
1 − 2

𝜋 cos−1
(
𝑅
2𝑠

)
+ 𝑅

𝜋𝑠

√
1 − ( 𝑅2𝑠)2

]
; otherwise

∙ The approximate probability that a packet goes into
outage at some 𝑡 ∈ (0, 𝑇 ) is now given by Eq. (28).

The OP of CSMARX is found by setting 𝑠𝑟𝑒𝑞 = 𝑠𝑠𝑒𝑛𝑠 = 𝑠
in Theorem 7, with the difference that the third line in Eq.
(20) is now valid for all 𝑠 ≥ 2𝑅.

VI. NUMERICAL RESULTS

For the simulations, we generate, as described in Section II,
the 3-D PPP of packets over an area of 𝐴 = 1000 m2, and set
w.l.o.g. 𝑅 and 𝜌 to be 1, and the path loss exponent 𝛼 = 4.
The derived formulas for slotted and unslotted ALOHA are
plotted in Fig. 4 for (𝑀,𝑁) = (1, 0),2 and seen to follow the
simulation results tightly for all densities. The curves confirm
Theorems 1 and 2, and that the slotted system outperforms
the unslotted one by approximately a factor of 2. Moreover,
we observe that the OP of ALOHA increases linearly with
the number of active interferers on the plane (which is equal
to the number of packet arrivals), until it reaches a saturation
point where OP ≈ 1. For the sake of the discussions in Section
IV-A, the backoff probability of CSMA, 𝑃𝑏, is also plotted in
Fig. 4. For low densities, 𝑃𝑏 is approximately equal to the OP
of slotted ALOHA. For higher densities, due to fewer active
interferers in CSMA, 𝑃𝑏 < 𝑃𝑜𝑢𝑡(Slotted ALOHA).

Fig. 5 shows the OP performance of CSMATX and
CSMARX for (𝑀,𝑁) = (1, 0) and (𝑀,𝑁) = (2, 1). The
analytical expressions are confirmed as they are seen to follow
the simulations tightly for (𝑀,𝑁) = (1, 0). However, for
(𝑀,𝑁) = (2, 1), we observe a greater discrepancy. This is
due to the fact that the guard zone approximation is used
multiple times when 𝑀 > 1 and 𝑁 > 0. Clearly, the OP
performance of CSMA is considerably reduced by increasing
𝑀 and 𝑁 . In order to compare the different protocols, in Fig.
6, the ratio of the OP of CSMATX and CSMARX over that

2In [22], the exact OP of slotted ALOHA for 𝛼 = 4 is derived
to be: 𝑃𝑜𝑢𝑡(Slotted ALOHA) = 1 − erfc(

√
𝜋𝛽𝜆𝜋𝑅2/2). Extending

this to unslotted ALOHA yields: 𝑃𝑜𝑢𝑡(Unslotted ALOHA) = 1 −
erfc(

√
𝜋𝛽𝜆𝜋𝑅2/2)2 . These expressions are also plotted in Fig. 4.
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𝑃𝑇𝑋
𝑑𝑢𝑟𝑖𝑛𝑔 =

⎧⎨
⎩

1 − 𝑒−𝜆𝑐𝑠𝑚𝑎 𝜋 𝑠2 ; 𝑠 <
𝑅

2

1 − 𝑒

−𝜆𝑐𝑠𝑚𝑎

[∫ 𝑅−𝑠

0

2𝜋 𝑟 𝑑𝑟 +

∫ 𝑠

𝑅−𝑠

[
2𝜋 − 2 cos−1

(
𝑟2+𝑅2−𝑠2

2𝑅𝑟

)]
𝑟 𝑑𝑟

]
;
𝑅

2
< 𝑠 < 𝑅

1 − 𝑒
−𝜆𝑐𝑠𝑚𝑎

∫ 𝑠

𝑠−𝑅

[
2𝜋 − 2 cos−1

(
𝑟2+𝑅2−𝑠2

2𝑅𝑟

)]
𝑟 𝑑𝑟

; otherwise

(28)
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Fig. 4. OP of slotted and unslotted ALOHA along with the backoff
probability of CSMA, as a function of spatial packet arrival density, for
(𝑀,𝑁) = (1, 0). The curves confirm our analytical results.
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Fig. 5. OP of CSMA as a function of spatial packet arrivals density for
(𝑀,𝑁) = (1, 0) and (𝑀,𝑁) = (2, 1). The curves confirm our analytical
results, and show the significant improvement provided by increasing the
allowable number of backoffs and retransmissions.

of slotted ALOHA for 𝛽𝑠𝑒𝑛𝑠 = 𝛽𝑟𝑒𝑞 = 0 dB is plotted for
both (𝑀,𝑁) = (1, 0) and (𝑀,𝑁) = (2, 1). Interestingly, for
lower densities, CSMATX yields about 10% more OP than
unslotted ALOHA. This is due to the exposed node problem,
i.e., the TX backs off in cases when its transmission would
not have contributed to any outage. The performance of slotted
ALOHA is almost two orders of magnitude higher than that
of CSMATX, as was also concluded in [6]. As the density
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Fig. 6. Ratio of the OP of CSMATX and CSMARX over that of unslotted
ALOHA both for when (𝑀,𝑁) = (1, 0) and (𝑀,𝑁) = (2, 1), as a function
of density for a constant SINR threshold of 𝛽𝑠𝑒𝑛𝑠 = 𝛽𝑟𝑒𝑞 = 0 dB.
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Fig. 7. Ratio of the OP of unslotted ALOHA and CSMA over that of
slotted ALOHA for (𝑀,𝑁) = (1, 0), as a function of the normalized sensing
threshold 𝛽𝑠𝑒𝑛𝑠/𝛽𝑟𝑒𝑞 for both a fixed low density of 𝜆 = 0.02 and a fixed
high density of 𝜆 = 0.2.

increases, so does 𝑃𝑏, thus decreasing the level of interference
in the channel and making CSMA more advantageous. The
introduction of the feedback channel in CSMARX emphasizes
the advantage of the backoff property, providing a performance
gain of 25% compared to CSMATX when (𝑀,𝑁) = (1, 0)
and 20% when (𝑀,𝑁) = (2, 1).

In Fig. 7, the ratio of the OP of CSMA over that of
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Fig. 8. OP of unslotted ALOHA and CSMA for (𝑀,𝑁) = (2, 1), as a
function of the normalized sensing threshold 𝛽𝑠𝑒𝑛𝑠/𝛽𝑟𝑒𝑞 for a fixed high
density of 𝜆 = 0.2. Similar behavior is seen for low densities.

slotted ALOHA with (𝑀,𝑁) = (1, 0) is plotted as a function
of 𝛽𝑠𝑒𝑛𝑠/𝛽𝑟𝑒𝑞, for both a low density of 𝜆 = 0.02 and
a high density of 𝜆 = 0.2. For low densities, we observe
that the OP of CSMATX increases monotonically with 𝛽𝑠𝑒𝑛𝑠,
meaning that the OP is in fact minimized when no sensing
is applied at all. This is due to the fact that for low values
of 𝛽𝑠𝑒𝑛𝑠, 𝐵(TX0, 𝑠𝑠𝑒𝑛𝑠) is too small, and consequently TX-
sensing provides minimal protection for its RX, resulting in
an approximately constant OP for all 𝛽𝑠𝑒𝑛𝑠 ≤ 𝛽𝑟𝑒𝑞 . For
higher values of 𝛽𝑠𝑒𝑛𝑠, 𝑃𝑏 becomes the dominant source
of outage, and as 𝑃𝑏 increases at a higher rate than the
decrease in 𝑃𝑑𝑢𝑟𝑖𝑛𝑔 , the total OP increases monotonically.
For CSMARX, however, a slight improvement in the OP is
observed when 𝛽𝑜𝑝𝑡𝑠𝑒𝑛𝑠 = 𝛽𝑟𝑒𝑞 . For higher densities, the benefit
of optimizing the sensing threshold becomes more significant
for both protocols. The OP is minimized for 𝛽𝑠𝑒𝑛𝑠 ≈ 𝛽𝑟𝑒𝑞
(as was also derived in Section V-B), providing up to 28%
improvement for CSMARX.

Fig. 8 shows the OP performance of ALOHA and CSMA
with (𝑀,𝑁) = (2, 1) for a high density of 𝜆 = 0.2. The
advantage of the sensing threshold optimization is more ap-
parent when 𝑀 > 1. By using 𝛽𝑜𝑝𝑡𝑠𝑒𝑛𝑠, the OP of CSMATX and
CSMARX can be reduced by up to 40% and 42%, respectively.
Note that the minimum OP occurs at a slightly higher sensing
threshold than 𝛽𝑟𝑒𝑞 . This is because the probability that outage
occurs due to the aggregate interference power from TXs
outside 𝐵(RX0, 𝑠𝑟𝑒𝑞) increases with 𝜆, and having a higher
𝛽𝑠𝑒𝑛𝑠 provides greater protection against this event.

Fig. 9 shows the ratio of the OP of unslotted ALOHA
and CSMA over that of slotted ALOHA as a function of
𝛽𝑠𝑒𝑛𝑠 = 𝛽𝑟𝑒𝑞 = 𝛽, for (𝑀,𝑁) = (2, 1) and a high density
of 𝜆 = 0.2. For low values of 𝛽, CSMARX yields up to 10%
lower OP compared to unslotted ALOHA, while CSMATX

yields 32% higher OP. However, as 𝛽 increases (i.e., for
𝛽 > −6 dB), making both the sensing zone and the com-
munication zone grow, the OP of CSMATX decreases below
that of unslotted ALOHA. This is because the ratio of the
area within which the arrival of an interferer causes outage in
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Fig. 9. Ratio of the OP of unslotted ALOHA and CSMA over that of
slotted ALOHA for (𝑀,𝑁) = (1, 0), as a function of the SINR threshold
𝛽𝑠𝑒𝑛𝑠 = 𝛽𝑟𝑒𝑞 = 𝛽 for a fixed high density of 𝜆 = 0.2.

CSMATX (i.e., 𝐵(RX0, 𝑠)∩𝐵(TX0, 𝑠)) over that in ALOHA
(i.e., 𝐵(RX0, 𝑠)) decreases with 𝛽. More interestingly, for
even higher values of 𝛽 (i.e., for 𝛽 > 8 dB), both CSMA
protocols actually perform better than slotted ALOHA. This is
because for large 𝑠, 𝐵(TX0, 𝑠) and 𝐵(RX0, 𝑠) overlap almost
completely, such that the only source of outage in CSMA is
if an interferer is placed inside 𝐵(RX0, 𝑠) during (0, 𝑇 ), as
is the case in slotted ALOHA. Moreover, due to the backoff
property of CSMA, the density of interferers is lower than that
of ALOHA, making CSMA yield a lower OP. Similar behavior
is observed for lower densities and other (𝑀,𝑁)-values.

VII. CONCLUSION AND FUTURE RESEARCH

In this paper, we have considered the performance of the
ALOHA and CSMA MAC protocols in terms of outage
probability (OP). Our ad hoc network model represents a
communication system in which TX-RX pairs are randomly
placed on a 2-D plane, and packets arrive continuously in time
based on a 1-D PPP. Within our SINR-based model, we derive
expressions for the OP of slotted and unslotted ALOHA,
CSMA with TX sensing (CSMATX) and CSMA with RX
sensing (CSMARX). Our derived analytical expressions are
consistent with the simulations, and an intuitive understanding
is established on the benefits of CSMA over ALOHA.

An interesting result is that when no backoffs or retrans-
missions are allowed, CSMATX actually performs worse than
unslotted ALOHA for low densities due to the exposed node
problem. By allowing the RX to sense the channel in CSMARX

and inform its TX over a control channel whether or not to
initiate its transmission, the performance of the conventional
CSMA is significantly improved.

Moreover, we optimize CSMA’s sensing threshold, 𝛽𝑠𝑒𝑛𝑠.
We observe that in particular at higher densities, significant
performance gain can be obtained by optimizing the sensing
threshold, which is derived to be 𝛽𝑜𝑝𝑡𝑠𝑒𝑛𝑠 = 𝛽𝑟𝑒𝑞 . The OP of
CSMATX and CSMARX can then be reduced by up to 40%
and 42% (for (𝑀,𝑁) = (2, 1)), respectively. This optimized
sensing threshold is slightly greater than 𝛽𝑟𝑒𝑞 at high densities,
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due to the extra protection it provides against the aggregate
interference from the TXs outside 𝐵(RX0, 𝑠𝑟𝑒𝑞).

In other related works, we have investigated the impact of
fading on the OP [19], and moreover optimized the OP of
ALOHA and CSMA by allowing for bandwidth partitioning
[23]. Other possible extensions are to apply adaptive rate
and power control to improve the performance of CSMA in
wireless ad hoc networks.

APPENDIX

A. Proof of Theorem 3

Denote the received SINR of the RX under observation,
RX0, by SINR0. The packet transmission of TX0-RX0 is
counted to be in outage if one or both of the following events
occur:
𝑎) The packet is backed off (i.e., SINR0 < 𝛽 upon packet

arrival) 𝑀 times and thus dropped.
𝑏) Once the packet transmission is initiated, one or both of

the following subevents occur 𝑁 + 1 times:
𝑏1) SINR0 < 𝛽 at the start of the packet, i.e., 𝑡 = 0.
𝑏2) SINR0 < 𝛽 at some 𝑡 ∈ (0, 𝑇 ).

where events (𝑎) and (𝑏) are independent except at the first
transmission attempt. This yields:

𝑃𝑜𝑢𝑡(CSMA) = Pr(𝑎) + (1 − Pr(𝑎)) Pr(𝑏1 ∪ 𝑏2∣𝑎)𝑁+1 (29)

= Pr(𝑎) − (1 − Pr(𝑎)) Pr(𝑏1 ∪ 𝑏2)
𝑁Pr(𝑏1 ∪ 𝑏2∣𝑎),

where the probability of events (𝑎) and (𝑏) are derived in the
following appendices. Eq. (10) is derived as

𝜆𝑐𝑠𝑚𝑎(𝑃𝑏, 𝑃𝑟𝑡1, 𝑃𝑟𝑡) ={
𝜆
∑𝑀−1

𝑚=0 𝑃
𝑚
𝑏 ; for 𝑁 = 0

𝜆
[∑𝑀−1

𝑚=0 𝑃
𝑚
𝑏 + (1 − 𝑃𝑀

𝑏 )𝑃𝑟𝑡1
∑𝑁−1

𝑛=0 𝑃𝑛
𝑟𝑡

]
; for 𝑁 ≥ 1

B. Proof of Theorem 4

Based on Eq. (29), the probability that event (𝑎) occurs is
Pr(𝑎) ≈ 𝑃𝑀

𝑏 , where 𝑃𝑏 can be lower bounded by considering
packet arrivals inside 𝐵(TX0, 𝑠) during [−𝑇, 0). We assume
that the number of active interferers on the plane follows a
PPP (which is proven by simulation results to be reasonable)
with density 𝜆𝑎𝑐𝑡𝑖𝑣𝑒, as given by Eq. (11). Applying the OP
expression for PPPs, 1 − 𝑒−𝔼[# of active interferers], we reach
Eq. (12).

Event 𝑏1 is concerned with packet arrivals during [−𝑇, 0),
resulting in Pr(𝑏1) ≈ 𝑃𝑏. For the first transmission attempt,
Pr(𝑏1∣𝑎) is found geometrically as the ratio of the area of
𝐵2 = 𝐵(RX0, 𝑠) ∩ 𝐵(TX0, 𝑠) over the area of 𝐵(RX0, 𝑠),
derived to be Eq. (14). For all retransmissions, Pr(𝑏1∣𝑎) =
Pr(𝑏1) = 𝑃𝑇𝑋

𝑑𝑢𝑟𝑖𝑛𝑔 . Pr(𝑏2) is lower bounded by the probability
that one or more interfering TXs are located and activated
inside 𝐵(RX0, 𝑠) at some 𝑡 ∈ (0, 𝑇 ). We assume that all inter-
ferers (following a PPP with density 𝜆𝑐𝑠𝑚𝑎) base their backoff
decision on the interference they see only from TX0. Since

𝜌𝑑−𝛼

𝜂 + interf. from TX0
≥ 𝜌𝑑−𝛼

𝜂 + interf. from TX0 and all other TXs :

Pr [≥ 1 interferer in 𝐵(RX0, 𝑠) at some 𝑡 ∈ (0, 𝑇 )∣active]

≤ Pr
[ ≥ 1 interferer in 𝐵(RX0, 𝑠) at some 𝑡 ∈ (0, 𝑇 ) if

backoff decision only considers TX0∣active
]
.

Fig. 10. The setup used to analyze 𝑃𝑇𝑋
𝑑𝑢𝑟𝑖𝑛𝑔 and 𝑃𝑅𝑋

𝑑𝑢𝑟𝑖𝑛𝑔 in Appendix B
and C, respectively. The transmission between TX0 and RX0 is assumed to
be active when the new packet arrival of TX1-RX1 occurs.

This means that we no longer have a lower bound, but rather
an approximate measure to Pr(𝑏2). For an interferer to be
activated, it must be placed at least a distance 𝑠 away from
TX0. Hence, Pr(𝑏2) = 𝑃𝑇𝑋

𝑑𝑢𝑟𝑖𝑛𝑔 is derived by considering the
area 𝐵2 = 𝐵(RX0, 𝑠)∩𝐵(TX0, 𝑠) (the shaded region in Fig.
10):

𝔼[# of interferers in 𝐵2] =

∫ 𝑠

𝑠−𝑅

∫ 2𝜋−𝛾(𝑟)

𝛾(𝑟)

𝜆𝑐𝑠𝑚𝑎 𝑟 𝑑𝜙 𝑑𝑟,

(30)
where 𝛾(𝑟) in the integration limit is found by using the
cosine-rule: 𝑠2 = 𝑟2 + 𝑅2 − 2𝑅𝑟 cos(𝛾) ⇒ 𝛾(𝑟) =

cos−1
(
𝑟2+𝑅2−𝑠2

2𝑅𝑟

)
. Solving the integral of Eq. (30) with

respect to 𝜙, and inserting it into 1−𝑒−𝔼[# of interferers in 𝐵2],
yields Eq. (13). Inserting these expressions back into Eq. (29)
yields Theorem 4.

C. Proof of Theorem 5

As in CSMATX, we have that Pr(𝑎) ≈ 𝑃𝑀
𝑏 . In order

to derive Pr(𝑏2) = 𝑃𝑅𝑋
𝑑𝑢𝑟𝑖𝑛𝑔 , we apply the fact that the

process that a packet starts in 𝐵(RX0, 𝑠) in (0, 𝑇 ) is a
nonhomogeneous PPP with intensity 𝜇(𝑥, 𝑦).

𝜇(𝑥, 𝑦) = Pr[pkt arrives at (x, y)] ⋅ Pr[pkt activated∣(x, y)]

= 𝜆𝑅𝑋𝑐𝑠𝑚𝑎 ⋅ Pr[active∣(x, y)].

Again, we assume that all interferers base their backoff
decision only on the interference from TX0, i.e., outage occurs
if an interferer falls inside 𝐵3 = 𝐵(RX0, 𝑠)∩𝐵(TX0, 𝑠−𝑅).
Integrating 𝜇(𝑥, 𝑦) over 𝐵3, yields:

𝔼 [# of interf. in 𝐵3 during(0, 𝑇 )] =

∫∫
𝐵3

𝜇(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

=

∫ 𝑠

𝑠−𝑅

∫ 2𝜋−𝜈(𝑟)

𝜈(𝑟)

𝜆𝑅𝑋𝑐𝑠𝑚𝑎 𝑃 (active∣𝑟, 𝜙) 𝑟 𝑑𝑟 𝑑𝜙. (31)
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Fig. 11. The setup used in the derivation of the OP expressions for CSMATX

and CSMARX in Appendix B and C, respectively.

𝜈(𝑟) is found by using the cosine rule as described in
Appendix B. 𝑃 (active∣𝑟, 𝜙) is the probability that TX𝑖 ini-
tiates its transmission, and is in effect a thinning process
of the rate of packet arrivals. Consider Fig. 11, and the
triangle TX1-RX0-TX0. Using the cosine rule, we have:
𝑥 =

√
𝑑2 + 𝑅2 − 2𝑅𝑑 cos𝜙. Next, consider the triangle P-

TX1-TX0. Again by applying the cosine rule, we derive 𝜃 to
be: 𝜃 = cos−1

(
𝑥2+𝑅2−𝑠2

2𝑅𝑥

)
. Furthermore, RX𝑖 must be placed

outside of 𝐵(TX0, 𝑠). Thus, the probability that an interfering
packet is activated is 𝑃 (active∣𝑟, 𝜙) = 2𝜋−2𝜃

2𝜋 , as given in Eq.
(17). Inserting these expressions back into Eq. (31), and using
the OP expression 1 − 𝑒−𝔼[# of interferers in 𝐵3], we arrive at
Theorem 5.

D. Proof of Theorem 6

Similar to Section IV-A, once a packet transmission has
been activated, we have that:

𝑃𝑇𝑋
𝑑𝑢𝑟𝑖𝑛𝑔 ≈ Pr

[
≥ 1 interferer active inside 𝐵(RX0, 𝑠𝑟𝑒𝑞) ∩

𝐵(TX0, 𝑠) at some 𝑡 ∈ (0, 𝑇 )
]
.

This probability varies with 𝑠, as is reflected in the integra-
tion limits. For 𝑅 ≤ 𝑠 < 𝑅 + 𝑠𝑟𝑒𝑞 , the derivation is as
explained in Appendix B. For 𝑠 > 𝑅+𝑠𝑟𝑒𝑞 , 𝐵(TX0, 𝑠) covers
𝐵(RX0, 𝑠𝑟𝑒𝑞), meaning that it is impossible for an interferer,
TX𝑖, to fall inside 𝐵(RX0, 𝑠𝑟𝑒𝑞) and be activated. Finally, for
𝑠 < 𝑅, TX𝑖 can in addition to the area that is covered by the
expression for 𝑅 ≤ 𝑠 < 𝑅+𝑠𝑟𝑒𝑞, also fall inside a circle of ra-
dius (𝑠−𝑅) around RX0. 𝑃𝑟𝑥∣𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 is the probability that at
least one interferer is placed inside 𝐵(RX0, 𝑠𝑟𝑒𝑞)∩𝐵(TX0, 𝑠),
given by 𝑃𝑟𝑥 × (1 − area of overlap). With these additional
considerations to Appendix B, we arrive at Theorem 6.

E. Proof of Theorem 7

To derive 𝑃𝑅𝑋
𝑑𝑢𝑟𝑖𝑛𝑔 , we consider the occurrence of an in-

terferer, TX𝑖, inside 𝐵(RX0, 𝑠𝑟𝑒𝑞) at some 𝑡 ∈ (0, 𝑇 ), while
RX𝑖 is placed outside of 𝐵(TX0, 𝑠). When 𝑠 > 2𝑅 + 𝑠𝑟𝑒𝑞 ,

𝐵(TX0, 𝑠) covers 𝐵(RX0, 𝑠𝑟𝑒𝑞) with a margin 𝑅. This means
that if TX𝑖 falls anywhere inside 𝐵(RX0, 𝑠𝑟𝑒𝑞), RX𝑖 will be
inside 𝐵(TX0, 𝑠), and TX𝑖-RX𝑖 would thus back off. For the
other ranges of 𝑠, the integration limits are adjusted as to cover
the area 𝐵4(𝑠) = 𝐵(RX0, 𝑠) ∩ 𝐵(TX0, 𝑠−𝑅), in the same
manner as described in Appendix C.

Furthermore, 𝑃𝑟𝑥∣𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 is derived as the probability that
at least one interferer is placed inside 𝐵5 = 𝐵(RX0, 𝑠𝑟𝑒𝑞) ∩
𝐵(RX0, 𝑠), and is hence zero when 𝑠𝑟𝑒𝑞 < 𝑠. When 𝑠𝑟𝑒𝑞 ≥ 𝑠,
it is equal to 𝑃𝑟𝑥

𝐵5

𝐵(RX0,𝑠𝑟𝑒𝑞)
With these additional consider-

ations to the proof in Appendix C, we obtain Theorem 7.
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