EE 8215 HW 7 Spring 2013

Due Monday 05/13/13 (noon, Xiaofan's office)

1.

2.

Khalil, Problem 13.27. (In part (b), do simulations but skip the performance comparison question.)
In class, we used the PR Lemma to show that a positive real linear system,

it = Ax+ Bu

y = Cx

has relative degree one, that is, CB # 0. Show that positive realness also implies a minimum phase
property. (Hint: Write the system equations in normal form and apply Positive Real Lemma.)

The dynamics of the translational oscillator with rotating actuator (TORA) are described by:

i‘l = T2
. —21 + exy? sin xg —€CoS T3
To =
1 — €2 cos? z3 1 — €2 cos? z3
T3 = Xy
Ty = v (e coszz(ry — ex?sinxs) + u)
1 — €2 cos? 3 4

where 7 and x5 are the displacement and the velocity of the platform, x3 and z4 are the angle and
angular velocity of the rotor carrying the mass m, and u is the control torque applied to the rotor. The
parameter € < 1 depends on the eccentricity e and the masses m and M.

With y = x3 as the output, determine the relative degree and the zero dynamics. Provide a physical
interpretation of the zero dynamics.
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13.5. EXERCISES

13.24 Consider the system (13.44)—(13.45), where 4
of ) = fy(n, 0) is asymptotically stable wiif, ’
[0Va/0n) £, (7,0) < ~W(n) for some Positive definite function W(n). Suppose 18] <
kllle] + W(n)]. Using a composi

posite Lyapunov function of the form v — Voln) +
AVETPE, where p Is the solution of P(4-BK) + (A-BK)Tp — —1, show that,
for sufficiently smal] k, the origin z = ( ig asymptotically stable
13'.25 Consider the system
T =Ty +2xf, Ty =3 4 u, T3 =T — x3, Yy=uxz

Design g state feedback contro] law

such that the oyt
the reference signal r(t) = sin¢.

put y asymptotically tracks

13.26 Repeat the previous exercise for the system

Ty =1z, + sinzy, To =Z1Zy + u, Y=z

13.27 The magnetic suspension System of Exercige 1.18 is mod

eled by
.’i‘] = I
T2 = g- ﬁwz ~ _Loaz}
m 2m{a + ;)2
gy o= L1 [~Rz3+w+uj
L(zy) (a+zp)2

=9, 3 = ¢, and y = o Use the
N/m/sec, g = g.g1 m/sec?, q
1Y)

following numerical datg:
=005 m, L, = 0.01 H,

m=01kg k = 0.001
Ly =0.02 H,and R=1

Show that, with the bal
linearizable.

' Using feedback lineariza

ol law so that the
;, output asymptotically tracks r(t) = 0.05 + 0.01sin¢. Simulate the closed-
00D system.




INTRODUCTION
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third equation is a torque equation for the shaft, with J as the rotor inertia and c3
as & damping coefficient. The term c;isw is the back e.m.f. induced in the armature

circuit, and ¢z fi, is the torque produced by the interaction of the armature current
with the field circuit flux.

(a) For a separately excited DC motor, the voltages v, and vy are independent
control inputs. Choose appropriate state variables and find the state equation.

(b} Specialize the state equation of part(a) to the field controlled DC motor, where
vs is the control input, while v, is held constant.

(c) Specialize the state equation of part(a) to the armature controlled DC motor,
where v, is the control input, while v; is held constant. Can you reduce the
order of the model in this case?

(d) In a shunt wound DC motor, the field and armature windings are connected
in parallel and an external resistance R, is connected in series with the field
winding to limit the field flux; that is, v = v, = vy + R.is. With v as the
control input, write down the state equation.

@ Figure 1.26 shows a schematic diagram of a magnetic suspension system,
ere a ball of magnetic material is suspended by means of an electromagnet whose
current is controlled by feedback from the, optically measured, ball position [211,
pp. 192-200]. This system has the basic ingredients of systems constructed to
levitate mass, used in gyroscopes, accelerometers, and fast trains. The equation of

- motion of the ball is

my = —ky + mg + F(y,1)

where m is the mass of the ball, ¥ > 0 is the vertical (downward) position of the
ball measured from a reference point (y = 0 when the ball is next to the coil), & is
a viscous Iriction coefficient, g is the acceleration due to gravity, F(y,4) is the force
generated by the electromagnet, and i is iis electric current. The inductance of the
electromagnet depends on the position of the ball and can be modeled as
Lyg
Ly} =L + e
(v} LTI /e

where L;, Ly, and a are positive constants. This model represents the case that the
inductance has its highest value when the ball is next to the coil and decreases to
a constant value as the ball is removed to y = co. With E(y,i) = 2L{y)i? as the
energy stored in the electromagnet, the force F(y, 1<) is given by

. BE Lgi®

Flg,i)=9" =~ 20
Ay 2a(l +y/a)

When the electric circuit of the coil is driven by a voltage source with voltage v,
Kirchhoff’s voltage law gives the relationship v = ¢ + Ri, where R is the series
resistance of the circuit and ¢ = L(y): is the magnetic flux lnkage.
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Figure 1.26: Magnetic suspension system of Exercise 1.18.

(a) Using z; = Y, T2 = ¢, and T3 =7 as state variables and u = v as control input,
find the state equation.

(b) Suppose it is desired to balance the ball at a certain position 7 > 0. Find the

steady-state values I,, and Vss of 4 and v, respectively, which are Recessary
to maintain such balance.

The next three exercises give examples of hydraulic systems [41].

1.19 Figure 1.27 shows a hydraulic system where liguid is stored in an open tank.
The cross-sectional area of the tank, A(hk), is a function of h, the height of the liquid
level above the bottom of the tank. ‘The liquid volume v is given by v = _[;‘ A(X) dh.
For a liguid of density p, the absolute pressure p is given by p = pgh + Pa, Where
Pa is the atmospheric pressure (assumed constant) and g is the acceleration due
to gravity. The tank receives liquid at a flow rate w; and loses liquid through a
valve that obeys the fHow-pressure relationship w, = kvAp. In the current case,
Ap =p — p,. Take u = w; to be the control input and Y = h to be the output.

{a) Using h as the state variable, determine the state model.
(b) Using p — p, as the state variable, determine the state model.

(c¢) Find u,, that is needed to maintain the output at a constant value r.

pump speed is shown in Figure 1.29. Let us denote this relationship by Ap = d(w;)
and denote its inverse, whenever defined, by w; = ¢ *(Ap). For the current pump,
Ap = p—p,. The cross-sectional area. of the tank is uniform; therefore, v = A% and
P = Pa + pgu/A, where the variables are defined in the previous exercise.



