
EE 8215 HW 1 Spring 2013

Due Th 01/31/13 (at the beginning of the class)

1. Duffing’s equation,
ÿ + δ ẏ − y + y3 = α cos (ωt) ,

exhibits chaotic behavior for certain values of parameters (δ, α, ω). For

δ = 0.05, α = 0.4, ω = 1.3,

simulate this equation and

• Plot the resulting phase portrait (the graphical representation that illustrates the dependence of
x2 := ẏ on x1 := y for various initial conditions);

• For your favorite choice of initial conditions, plot the time dependence of y and ẏ.

Discuss your observations.

2. Simulate the van der Pol equation

ÿ +
(
y2 − 1

)
ẏ + y = 0,

and

• Plot the resulting phase portrait;

• For your favorite choice of initial conditions, plot the time dependence of y.

• Compare your observations with the results obtained in the Duffing’s equation problem.

Now, change the sign of the nonlinear term in the van der Pol equation

ÿ −
(
y2 − 1

)
ẏ + y = 0,

and determine local stability properties of the origin using linearization. For the same set of initial
conditions that you chose in your simulations of the van der Pol equation, do simulations of this system.
Discuss your observations.

3. Khalil, Problem 1.18 (attached).

4. Strogatz, Problems 3.4.2, 3.4.4, 3.4.7, and 3.4.9 (attached).
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c) What type of bifurcation occurs at the laser threshold Pc ? 
d) (Hard question) For what range of parameters is it valid to make the approxi-

mation used in (a)? 

3.3.2 (Maxwell-Bloch equations) The Maxwell-Bloch equations provide an 
even more sophisticated model for a laser. These equations describe the dynamics 
of the electric field E ,  the mean polarization P of the atoms, and the population 
inversion D :  

E = /( P  E) 

P = Yl (ED P) 

i> Y2 (A + I - D - AEP) 

where /( is the decay rate in the laser cavity due to beam transmission, Yl and Y2 
are decay rates of the atomic polarization and population inversion, respectively, 
and A is a pumping energy parameter. The parameter A may be positive, negative, 
or zero; all the other parameters are positive. 

These equations are similar to the Lorenz equations and can exhibit chaotic be­
havior (Haken 1 983, Weiss and Vilaseca 1 99 1). However, many practical lasers do 
not operate in the chaotic regime. In the simplest case Yl ' Y2 » /( ;  then P and D re­
lax rapidly to steady values, and hence may be adiabatically eliminated, as follows. 
a) Assuming P ""  0 ,  i> ""  0 , express P and D in terms of E , and thereby derive a 

first-order equation for the evolution of E . 
b) Find all the fixed points of the equation for E .  
c) Draw the bifurcation diagram of E * VS. A .  (Be sure to distinguish between 

stable and unstable branches.) 

3.4 Pitchfork Bifurcation 

In the following exercises, sketch all the qualitatively different vector fields that 
occur as r is varied. Show that a pitchfork bifurcation occurs at a critical value of 
r (to be determined) and classify the bifurcation as supercritical or subcriticaL Fi­
nally, sketch the bifurcation diagram of x * vs. ! .  
3.4. 1 i =  rx + 4x3 3.4.2 x rx sinh x 

3.4.3 i rx 4x3 3.4.4 . rx 
x = x + --

I + X2 

The next exercises are designed to test your ability to distinguish among the vari­
ous types of bifurcations-it' s easy to confuse them! In each case, find the values 
of r at which bifurcations occur, and classify those as saddle-node, trans critical, 
supercritical pitchfork, or subcritical pitchfork. Finally, sketch the bifurcation dia­
gram of fixed points x * vs. r .  
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3.4.5 X = r 3x2 

3.4.7 X = 5 - re-x2 

3.4.6 X rx x 
l + x 

3.4.8 .x = rx - x 
1 +  

3.4.9 x = x + tanh(rx) 3.4.1 0  
x3 

x = rx +  
1 +  

3.4.1 1 (An interesting bifurcation diagram) Consider the system x = rx sin x . 
a) For the case r = 0 ,  find and classify all the fixed points, and sketch the vector 

field. 
b) Show that when r > 1 , there is only one fixed point. What kind of fixed point is 

it? 
c) As r decreases from 00 to 0, classify all the bifurcations that occur. 
d) For 0 < r «  1 ,  find an approximate formula for values of r at which bifurca­

tions occur. 
e) Now classify all the bifurcations that occur as r decreases 0 to -00 • 
f) Plot the bifurcation diagram for -00 < r < 00 ,  and indicate the stability of the 

various branches of fixed points. 

3.4. 1 2  (HQuadfurcation") With tongue in cheek, we pointed out that the pitch­
fork bifurcation could be called a "trifurcation," si"nce three branches of fixed 
points appear for r >  O .  Can you construct an example of a "quadfurcation," in 
which x = I(x, r) has no fixed points for r < 0 and four branches of fixed points 
for r > O ?  Extend your results to the case of an arbitrary number of branches, if 
possible. 

3.4. 1 3  (Computer work on bifurcation diagrams) For the vector fields below, 
use a computer to obtain a quantitatively accurate plot of the values of x * vs. r ,  

where 0 ::;; r ::;; 3 .  In each case, there' s  an easy way to do this, and a harder way us­
ing the Newton-Raphson method. 

a) x = r - x  e-x b) x 

3.4.14  (Subcritical pitchfork) Consider the system x = rx + x3 - x5 , which ex­
hibits a subcritical pitchfork bifurcation. 
a) Find algebraic expressions for all the fixed points as r varies. 
b) Sketch the vector fields as r varies. Be sure to indicate all the fixed points and 

their stability. 
c) Calculate r, ' the parameter value at which the nonzero fixed points are born in a 

saddle-node bifurcation. 

3.4.1 5  (First-order phase transition) Consider the potential V(x) for the system 
.x rx + x3 - x' . Calculate r" where r,. is defined by the condition that V has three 
equally deep wells, i .e . , the values of V at the three local minima are equal. 
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