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Abstract

This paper deals with the design of coded waveforms whiclmipe radar performances in the
presence of colored Gaussian disturbance. We focus on #%s cf phase coded pulse trains and
determine the radar code which approximately maximizegl#itection performance under a similarity
constraint with a pre-fixed radar code. This is tantamourfibtoing a similarity between the ambiguity
functions of the devised waveform and of the pulse train dadowith the pre-fixed sequence. We
consider the cases of both continuous and finite phase aphabd formulate the code design in
terms of a non-convex, NP-hard quadratic optimization [enwb In order to approximate the optimal
solutions, we propose techniques (with polynomial comjportal complexity) based on the method of
Semidefinite Program (SDP) relaxation and randomizationreddver, we also derive approximation
bounds yielding a “measure of goodness” of the devised digos. At the analysis stage, we assess
the performance of the new encoding techniques both in tefrdstection performance and ambiguity
function, under different choices for the similarity pamter. We also show that the new algorithms

achieve an accurate approximation of the optimal solutigth & modest number of randomizations.
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I. INTRODUCTION

The problem of radar waveform design has recently receivedti@eable attention from the
signal processing community. The invention of new flexiblaveform generators and of high
speed signal processing hardware has determined the gewehd of advanced and often very
sophisticated algorithms for radar signal shaping [1], [2]

Waveform optimization in the presence of colored distudgawith known covariance matrix
has been addressed in [3]. Three techniques based on thenizaton of the Signal to Noise
Ratio (SNR) are introduced and analyzed. Two of them alsdoéxihe degrees of freedom
provided by a rank deficient disturbance covariance matnix4], a signal design algorithm
relying on the maximization of the SNR under a similarity stvaint with a given waveform
is proposed and assessed. The solution potentially engasatie target contribution and de-
emphasizes the disturbance, preserving also some chasticseof the desired waveform. In [5]
a signal subspace framework, which allows the derivatiothefoptimal radar waveform (in the
sense of maximizing the SNR at the output of the detectorafgiven scenario, is presented
under the Gaussian assumption for the statistics of bothatiget and the clutter. Signal shaping
for target matched-illumination has been considered i 16]. Moreover, further very recent
and advanced techniques for radar waveform design can el iou2] and references therein.

A quite different signal design approach relies on the maiiluh of a pulse train parameters
(amplitude, phase, and frequency) in order to synthesizeefoans with some specified prop-
erties. This technique is known as the radar coding and aamitiz bulk of work is nowadays
available in the literature about this topic. Here we memtiarker, Frank, and Costas codes
which lead to waveforms whose ambiguity functions sharedg@solution properties both in
range and Doppler. This list is not exhaustive and a compethe treatment can be found in
[11], [12]. Nevertheless, it is worth pointing out that thelzsiguity function is not the only
relevant objective function for code design in operatirtgagions where the disturbance is not

white. This might be the case of optimum radar detection énptesence of colored disturbance,
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where the standard matched filter is no longer optimum andtbst powerful radar receiver
requires whitening operations.

In [13], focusing on the class of linearly coded pulse trdimsth in amplitude and in phase),
the authors propose a code selection algorithm which maeisnihe detection performance but,
at the same time, is capable of controlling both the regioaatfievable values for the Doppler
estimation accuracy and the degree of similarity with afpred radar code. The algorithm first
relaxes the original problem into a convex one which beldogke SDP class; then it derives an
optimum code through a rank-one decomposition of an optgsokition of the relaxed problem.

Nevertheless, in several practical situations, the radaplifiers usually work in saturation
conditions and hence an amplitude modulation might be diffikeven if not impossible) to
perform. To this end, in the present paper, we focus on cotstadulus waveform and consider
the synthesis of phase coding schemes for radar coheresd prains. We study the cases of both
continuous and finite phase alphabet, and formulate the dedign in terms of a non-convex,
NP-hard, quadratic optimization problem. In order to apprate the optimal solutions, we
propose techniques (with polynomial computational coxipte based on SDP relaxation and
randomizatioh. We also evaluate, in both the considered cases, the appatgin bound which
represents a “measure of goodness” of an approximatiomigped as it characterizes the quality
of the solutions produced by the method. At the analysisestag assess the performance of
the new encoding algorithms both in terms of detection céiiab and ambiguity function. The
results show that they achieve an accurate approximatidheobptimal solution with a quite
modest number of randomizations. Moreover, depending emdsign constraints, it is possible
to trade off detection performance for desirable properbiethe waveform ambiguity function.

The paper is organized as follows. In Section II, we predemitodel for both the transmitted
and the received coded signal. In Section lll, we discusscthieria exploited for phase code
design. In Sections IV and V, we introduce the new algoritrand derive the approximation
bounds with reference to the cases of both continuous arte finide alphabet. In Section VI,
we assess the performance of the proposed encoding metlsods @omparison with standard

radar codes. Finally, in Section VI, we draw conclusiond antline possible future research

1SDP relaxation and randomization techniques have also tmhin other signal processing fields. For instance in maxim
likelihood multiuser detection [14], Multiple Input Muftie Output (MIMO) decoding [15], and transmit beamformirid].
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tracks.

[l. SYSTEM MODEL

We consider a radar system which transmits a phase codedeobteirst of pulses

s(t) = ayu(t) explj (27 fot + @),

whereaq, is the transmit signal amplitudg,= v/—1,

N-1

u(t) =Y alip(t —iT,),

=0
is the signal’s complex envelope (see Figured},) is the signature of the transmitted pulse,
T, is the Pulse Repetition Time (PRT}(0),a(1),...,a(N —1)] € CV is the radar phase code
(i.e. a(i) = expljoy], 1 = 0,..., N — 1), fo is the carrier frequency, and is a random phase.

Moreover, the pulse waveform(t) is of duration7,, < 7, and has unit energy, i.e.

TP
/mw%zL
0

where| - | denotes the modulus of a complex number. The signal batksedtby a target with

a two-way time delay- and received by the radar is
r(t) = ogrej%(fo"'fd)(t_ﬂu(t —7) +n(t),

where o, is the complex echo amplitude (accounting for the transmipléude, phase, target
reflectivity, and channels propagation effectg),is the target Doppler frequency, andt) is
additive disturbance due to clutter and thermal noise.

This signal is down-converted to baseband and filtered giraulinear system with impulse

responséi(t) = p*(—t), where(-)* denotes complex conjugate. Let the filter output be

N-1

w(t) = ane 7T " a (i)l Ty (E— AT, — 7, fa) + w(t) |
=0

wherey, (A, f) is the pulse waveform ambiguity function [11], i.e.

“+oo
Mwﬁzf () (@ — NIy,

[e.9]
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andw(t) is the down-converted and filtered disturbance componére.signalv(t) is sampled

att, =7 +kT,, k=0,...,N — 1, providing the observablés
U(tk) = aa(k‘)ejZkadTrXp(Ov fd) + w(tk)v k= 07 B N -1 )

wherea = a,.e=#2™/7_ Sincex(0, f;) does not depend ank)’s and, as a consequence, does not
affect the design of radar code, we assume hereaftendlatf,) = 1 for convenience. Hence,

we can rewrite the samplegt;) as
v(ty) = aa(k)e*™ i L w(ty),  k=0,...,N—1.

Moreover, denoting bye = [a(0),a(1),...,a(N — 1)]7 the N-dimensional column vector
containing the code elemeftp = [1, /2 falr  27(N=-DTT the temporal steering vector,
v = [v(ty),v(t1),...,v(ty_1)]F, andw = [w(ty),w(ty),...,w(ty_1)]", we get the following

vectorial model for the backscattered signal
v=acOp+w, Q)

where® denotes the Hadamard element-wise product [17].

1. RADAR PHASE CODE DESIGN CRITERIA

As already said in the introduction, we are looking for theag# code which optimizes the
detection performance, under a similarity constraint vatgiven radar code exhibiting a good
ambiguity function. In this section, we formulate matheicelty the aforementioned criterion
highlighting how the detection probability can be maxintizend the similarity constraint can
be enforced. To this end, we recall that the problem of deiga target in the presence of
observables described by the model (1) can be formulate@rmst of the following binary

hypotheses test

2)
H:v=acoOp+w

2We neglect range straddling losses and also assume that @herno target range ambiguities. This last assumption is
usually met in Low Pulse Repetition Frequency (LPRF) radansl in particular in medium-long range radars for earlynirag
applications), but might be restrictive for High PRF (HPRystems.

3()T is the transpose operator.
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We assume that the disturbance veaiors a zero-mean complex circular Gaussian vector with

known positive definite covariance matrix
Elww'] = M

(E[-] denotes mathematical expectation apg conjugate transpose). This implies that the
Generalized Likelihood Ratio Test (GLRT) detector for thelgem (2), which coincides with
the optimum test [18] (according to the Neyman-Pearsoerwwit) if the phase of is uniformly

distributed in[0, 27), is given by
WM™ (cop)]® < G, 3)

where(G is the detection threshold set according to a desired vdltleedalse alarm Probability
(Prq)- An analytical expression of the detection Probabilify;)( for a given value ofPy,, is

available for both the cases of non-fluctuating and fluchgatarget. In the former case (NFT),

Pd = (\/2‘04 C@p)TM (C®p _2111 Pfa) (4)

while, for the case of Rayleigh fluctuating target (RFT) wifi«|?]

In Pfa )
l+a(cop)iM(cap)/)’
whereQ(-, -) denotes the Marcur@ function of orderl. These last expressions show that, given

Py = exp (_ (5)

Py,, P, depends on the radar code, the disturbance covariancexraattithe temporal steering

vector only through the SNR, defined as
la(cop) M (cop)  NFT
SNR= (6)
clcop)fM(cop) RFT
Moreover, P, is an increasing function of SNR and, as a consequence, tkanmation of P,

can be obtained maximizing the quadratic form
(cop)!M Y (cop)=c'Re, (7

where R = M~ © (pp')*, over the radar code. We just highlight thBt is the Hadamard
product of two positive semidefinite matrices, and heRces itself positive semidefinite [19, p.
1352, A.77].
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If the maximization of (7) is performed under only an energystraint for the transmitted
vector (i.e.|lc||> = N, where|| - || denotes the Euclidean norm of a complex vector), the
optimum code is proportional to the eigenvector®fcorresponding to the largest eigenvalue.
Unfortunately, this solution does not usually belong to thess of phase codes and, even if it
provides the best detection performance, it does not yseahibit good ambiguity properties
(i.,e. a narrow main peak both in range and in Doppler and ivelst low sidelobe peaks).
Enforcing a similarity constraint with a given phase cagle which shares a good ambiguity,
seems a reasonable way to optimiZg and, at the same time, of controlling the ambiguity
distortion. This is tantamount to optimizing the detectpmiformance in a suitable neighborhood
of a known code, where the ambiguity function exhibits ataele behavior. In this paper we

exploit thel,, nornf to impose the similarity, namely we force
lle = eollo <€,

where( < ¢ < 2 is a real parameter ruling the degree of similarity. We alsaster two
possibilities for the entries of. The former just assumes thatis a phase code, namely the
modulus of thek-th entry|c(k)| =1, k = 1,..., N. The latter considers the case of a finite code
alphabet of sizell, i.e. c(k) € {1,231, ... >}, k = 1,...,N. In this last situation,
we also suppose that the entries of the similarity code lgelonthe same alphabet as the
sought vector. In the next two sections, we introduce phaskng algorithms for each of the

aforementioned situations.

V. PHASE CODING ALGORITHM WITH SIMILARITY CONSTRAINT (PCA-SC)

In this section, we focus on the cak€k)| =1, k= 1,..., N, and formulate the phase code

design in terms of the following complex quadratic optintiaa problem

max c'Re
st |le— colloo <€, (8)
le(k)| =1, k=1,...,N,
where the parameterrules the set of admissible codes. Specifically, decreasiagantamount

to reducing the size of the feasible region. The similartystraint in (8) can be equivalently

“Given anN-dimensional complex vectat its [ norm [17] is defined agiz||e = maxye(1,.. ny |z(k)|.
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writter® as |c(k) — co(k)| <€, or R [c*(k)eo(k)] > 1 —€2/2, for k = 1,..., N, which implies
argc(k) € [vk, vk + 0c], Wherey, = arg eg(k) — arccos(1 — €2/2) andd, = 2 arccos (1 — €2/2)
for k =1,..., N. Based on this observation, problem (8) can be recast as

max c'Rc

s.t. arge(k) € [y, i+ 0, 9)

le(k)| =1, k=1,...,N.

Notice that in the instance af= 2 (or equivalentlys. = 27), the phase constraints of (9) are
redundant and the problem reduces to

max c'Rec

st |e(k)| =1, k=1,...,N.
Even the simpler formulation (10) is NP-hard [20], [21], Ithére exist efficient approximation

(10)

algorithms, based on relaxation and randomization, whathiexe an accurate approximation of
the optimal solution with a modest number of randomizatif@ig, [22].

According to the NP-hard nature of problem (9), one cannat fiolynomial time algorithms
for computing its optimal solutions. As a consequence, @ ftillowing, we focus on approx-
imation techniques and propose the following relaxatiod andomization algorithm which

provides a randomized feasible solution of (9).

Algorithm I: PCA-SC

1) Solve the SDP problem below and denoteZ&yan optimal solution:

(SDP) max t(RZ)
st Zy. =1, k=1,...,N,
Z =0

(Zyy denotes the(k, k)-th entry of Z and Z > 0 indicates thatZ is positive

semidefinite).
2) Generate a random vectgre CV from the complex normal distribution/c(0,Y)

whereY = Z oy, yl, wherey, = [e=1, ... e~ 9]T,
3) Assign eache(k) = yi(k)o(&), k=1,..., N, where

a(x) = ej "o de

,x e C.

®Let = be a complex numbefR[x] is the real part ofc, andarg z € [0, 27) denotes the phase of
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We point out that, in order to improve the approximation gyathe randomization stepg @nd
3) are repeated several times, and the randomized feasilbiligosoyielding the largest objective
function will be chosen as the approximate solution. As il Wwé shown in the performance
analysis, the proposed randomization can achieve an daecapproximation of the optimal
solution with a quite modest number of randomizations.

As to the computational complexity connected with the impatation of the algorithm, the
solution of the SDP relaxation requirés N3-) floating point operations (flopSwhereas each
randomization involve® (N?) flops [14]. It follows that, for a modest number of randomiaas,
the most relevant contribution to the computational is emted with the SDP solution.

Finally, we explicitly acknowledge that, at the currenttstaf the art, most radar systems
use phase coded waveforms, where the phases are taken frarteaafid regularly spaced
alphabet. This represents a limiting factor that prevemespractical realization of the PCA-SC.
Nevertheless, even if the current technology is not ablenjglement on the field the proposed

algorithm, it may not be definitely ruled out in the near fetur

A. Approximation Bound

A “measure of goodness” of an approximation algorithm isvigted by the approximation
bound which characterizes the quality of the produced &wist In the literature, a randomized
approximation method for a maximization problem has an@ypration bound (or performance
guarantee, or worst case ratif)c (0, 1], if for all instances of the problem, it always delivers
a feasible solution whose expected value is at ldadimes the maximum value. Such an
algorithm is usually called randomize@approximation algorithm. More precisely, let-) be
the maximum value of an instance of a given probleim then a feasible solution produced

by a randomizedR-approximation algorithm, complies with
E[the objective function evaluated at > Ru(-).

It is clear that an algorithm producesbatter approximation, if the approximation bound is

closer to 1. In this subsection, we aim at establishing an approtxamaound for Algorithm I.

®Herein, we use the usual Landau notati©gn); hence, an algorithm i€ (n) if its implementation requires a number of

flops proportional to: [23].
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Theorem 4.1: Denoting byz an output of Algorithm | and by (SDP) the optimal value of
SDP, the following inequality holds true

E[z'Rz] > R.v (SDP),

where
(1 — cosd,)

2(2m — 0.)%

that is , Algorithm | has an approximation bourid.

R, =

Proof. Letu, = %yz(k), wherew is the complex number

27(—sind,. + j(1 — cosd.))
21 — 0, '

To computeE|[z(k)z*(1)], we exploit the equality
Elz(k)z"()] = —uru; EIE(F)E (D] + u E[E(k) 2" (1)] +

w B[E(1)z(k)] + El(urg (k) — 2(k)) (wé(l) — 2(1))"]. (11)

(1) —uE[E(k)E(1)] = — 1= |w|*Z .
1 Yy
Y, 1 ’
we may represent the components as

We now evaluate the first three terms in the right-hand sidin@fabove equality
(2) wE[E(k)z*(1)] = t=|w[>Z ). Since
k
&) | Ao
£(10)
n 10
§(k) =Yun+ V1 —[YulPA (1) =n, €N | 0, :
A 0 1
It follows that

El(Yun+ 1 =Y u*2\)y.(1)o"(n)]
= Yuy.()EMRo™ ()] + 1= |Yuly.()E[A™(n)]

= Yy ()E[no*(n)),

E[g(k)z"(1)]
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where the statistical independence betwgeand )\ is exploited in the last equality. Notice
that

Elno™(n)]

/ pel®a* (pel®) 'Oe & dadp
0

[e'¢) 27
/ pelo* (el) e N dadp
0

1 21 )
= —/ %e pd,o/ e () da
™ Jo 0
1 2 ) )
— —4ﬁ/0 Yo" (/) da
w

m>
where we have used the polar coordinate representgtien pe’® in the first equality,
[ pPedp = @ in the second last equality, anjf’r ela*(e’*)da = w in the last
equality. Therefore, we have

up ElE(k)z ()] = ukmycm% = F wl*Zy.

(3) wi Bl (D)z(k)] = g |w]*Z.
Exploiting the representation

10

it can be shown that; E[¢*(1)z (k)] = o= |w[*Z),.

It thus follows from (11) that

1 .
Elz(k)z" ()] = 1o-1wl*Zu + Bl(ué(k) — 2(k)) (wg(l) — z(1)]
Denoting by s the N-dimensional complex vector with entriegk) = w&(k) — z(k), k =
1,..., N, the above equality implies that
1 R
i 2 f
E[zz"] 167r‘w| Z + E[ss'].

Now, sinceR > 0, we have
|wl?

167

jw]?

Elz'Rz] = E[tr((Rzz")] = —tr(RZ) + E[tr(Rss')] > “é tr(RZ) = 16—7TU(SDP).
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This completes the proof. U

It remains to show thaf?, € (0,1). To this end, we claim thaz. € (0, 7] for any given
. € (0,2x]. This result stems from the following
Proposition 4.2: The univariate function

2(1 — cosz)
2 —x

fz) =
is strictly increasing ove(0, 2x), and f(0) = 0, f(2m) = 1.

Proof. See Appendix A. O

We remark that the obtained approximation bound is indepeindf v,’s. Further, as already
pointed out, when). = 27, namely phase constraints in (9) redundant, the bourf wehich

agrees with the results of [21] and [22].

V. FINITE ALPHABET PHASE CODING ALGORITHM WITH SIMILARITY CONSTRAINT

(FA-PCA-SC)

In this section, we focus on the finite alphabet case nam@ly € {1,e/2%ar, ... /2 "5},
k=1,...,N, and formulate the design of the phase code in terms of thewfivlg complex
guadratic optimization problem

max c'Rc
st |le—colle < e, (12)

M—1

c(k) € {1, ar ... eI}, k=1,...,N

wherecy(k) € {1, e/, ... 5} k=1,...,N, and M > 3.
Notice that the constrairjt(k) — co(k)| <€, k=1,..., N, is equivalent toR [c(k)c;(k)] >

1 — €%/2 for eachk, which in turn amounts to enforcing

o Br .o Bptl o Betog—1
c(k) € {2 ¥ e )

where

D

_ Marg2(7rco(k:)) B {M arccos2(7i —€ /2)J
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depends orry (k) ande,

1+ QLN[arCCO;(rl_Ez/z)J c e [072)

M €e=2

d:

depends only on, and|- | denotes the integer floor operation. Based on this obsengiroblem

(12) can be recast as

max c'Re
st. arge(k) € %[ﬁk,ﬁkle,...,ﬁk—i—éd— 1], (13)
le(k)| =1, k=1,...,N

It can be exactly solved by an exhaustive search in which bijective function is evaluated for
all possible combinations of thek)’'s ensuring feasibility. Nevertheless, this kind of seaixh
prohibitive due to its exponentially increasing computaél complexity (i.eO(M™Y)). Hence, it
would be desirable to devise algorithms that could effityeimd (in polynomial time) the global
optimal solution. Unfortunately, such algorithms do noisebecause the considered problem is
NP-hard. To clarify this point, we consider the specialanse of redundant similarity constraints

in (13), i.e.e = 2, where the problem reduces to

max c'Re
o M (14)
st c(k) e {l,e?m, ... e}, k=1,...,N
Thus, we observe that (14) is NP-hard since it includes MauB-problems [24], [25] as
special cases. Due to the NP-hard nature of (13), in thewaolp we focus our attention
to approximation algorithms sharing a polynomial compatetl complexity. Specifically, we
propose the following relaxation and randomization aldponi which provides a randomized

feasible solution of (13).
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Algorithm 11: FA-PCA-SC
1) Solve the SDP problem below and denoteZyan optimal solution:

(SDP) max t({RZ)
st Zy. =1, k=1,...,N,
Z 0.
2) Generate a random vectg§re CV from the complex normal distributiog(0, W)
whereW = Z © y,y!, wherey, = [e 755 .. e i58N]T,

3) Assign eacte(k) = yi(k)u(&k), wherep(x) is defined as

(1, if argz € [O,QWé);
27 L P .
(z) = eI o if arga € [27?%,27?%),
\ R argx € [2%5%;1,2@.

As for the PCA-SC, the computational complexity is mostliated to the solution of the SDP
problem O(N?3%) flops). Moreover, also with reference to the finite alphakete¢c a modest

number of randomizations is sufficient to ensure satisfggberformances.

A. Approximation Bound

In this subsection, we derive the approximation bound fayoikhm Il. Precisely, we prove
the following

Theorem 5.1: Denoting byz an output of Algorithm Il and by (SDP) the optimal value of
SDP, the following inequality holds true

E[z'Rz] > Ryv (SDP),

where s

CT 4r sinz(ﬂ(i - L))

Namely, Algorithm Il has an approximation boutt),.

sinz(wi) sin?(m

Proof. The proof can be done with the same technique as Time@tel) replacings(-) with
wu(+), Y with W, letting

o 8y
1 — 6327rﬁ

o 64—1 oL . 1,
6]27‘('7 (63 5. 632ﬂ—ﬁ)
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and observing that

2
/ el () da
0

27r 27r51 27 5
d jo —jord jor  — '27rd—71
= ejo‘da+ %I M do 4 - - - + e?%e ™IV do
0 27 L 27r(5“l71

5

-1 9 5g—1

ior L '7r1 . jiorL _so-9d—1 T —
— (1 =€) 4 j(1 — 7)o i (1= P P

]27r -1

= (1= PR (1+ e 6251d+‘ T

1— €j27rﬁ

= (1= ™)

. 5q—1 - 1 . 1
eI 2m =4 (6127T5d N €j27rﬁ)

= w.

U

20 L
It still remains to prove thaR, < (0, 1). To this end, we claim thak, < (0, %] for

any givend, € (1, M]. This result stems directly from the following

Proposition 5.2: The univariate function

2sin(md) sin(m L)
= G )

)
is strictly increasing ove(1, M), and f(1) =0, f(M) = 2M sin(r ;).

Proof. See Appendix B. O

We remark that, when, is equal to)M, namely inactive similarity constraint, the approx-

%, which coincides with that derived in [21] and [22]. Moregve

0< % <1 forany M > 3, anszSiZii(”%) tends to} as M goes to infinity.

Let us just take a look at the cadé = 16. The bound iskR = 0.7740 if e = 2; R = 0.7641
if € € [1.9616,2); R = 0.6856 if € € [1.8478,1.9616); R = 0.5497 if ¢ € [1.6629, 1.8478);
R = 0.3869 if € € [1.4142,1.6629); R = 0.2310 if ¢ € [1.1111,1.4142); R = 0.1084 if
€ €[0.7654,1.1111); R = 0.0326 if € € [0.3902,0.7654); if € € [0,0.3902), thend, = 1, i.e., the

problem is trivial because it contains only one feasibleisoh.

imation bound is

Before concluding this section, it is necessary to highliggat an on-line waveform design
might be computationally intensive especially for airbmapplications. However, what we would

remark is that the design of the code does not have to be daesseily on-line. For instance,
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one can construct (off-line) a codebook, based on someldaiigapriori covariance models, and
just to select the element of the codebook. Further, theritthgo might be on-line applied to
other kind of radars (not necessarily airborne), where tgrenment is not rapidly varying
and there is sufficient time to perform the design of the cogferle a significant change in the

operating conditions.

VI. PERFORMANCEANALYSIS

The present section is aimed at analyzing the performantigegiroposed encoding schemes.
To this end we assume that the disturbance covariance matmxponentially shaped with

one-lag correlation coefficient= 0.8, i.e.
M;; = p!,

and fix P, of the receiver (3) tol0~°. As to the temporal steering vectgr, we set the
normalized Doppler frequency,7, = 0.15. The analysis is conducted in terms of bdth and

ambiguity function of the phase coded pulse train defined as

O = [ alwr (- Ve - 3 e (= m)T. f),

- =1 m=1

The convex optimization MATLAB toolbox SeDuMi [26] is usedrfsolving the SDP relaxation.
In Figure 2, the detection performance of the PCA-SC is etbttersuga|? with reference to
the case of non-fluctuating targe¥, = 16, number of randomizations = 20, several values of
¢, and considering as similarity sequence a P3 code ([27] Bhdd]. 127, 6.6 ]). For comparison,
we also plot theP; of the similarity code and the benchmark performance obthmaximizing
the SNR without the constant modulus constraint, namelyoixpy the optimal value of the

problem
max c'Re

(15)
st )z =N.

Of course, the considered benchmark performance is notriargeachievable by a phase code,

but it can be used to evaluate the performance loss that thetazd modulus assumption implies

"We have also considered other values for the target noreshldoppler frequency. The results, not reported here, confir
the performance behavior showed in this section.
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for e = 2. Finally, all the curves have been obtained averaging tiselte of N.,, = 500
statistically independent experiments. The results sha# forcing stronger and stronger simi-
larity constraints, we get worse and worse detection perdoices. This was actually expected
since decreasing is tantamount to reducing the size of the feasible regionreideer, this
perfectly agrees with the behavior of the approximationrabwhich predicts worse and worse
P, decreasing.. Whene = 0, the performance ends up coincident with that of the simtylar
code which is the only feasible solution. The curves alsdliayt that the performance loss
implied by the constant modulus assumption is a fraction®fa ¢ = 2.

The effects of the similarity constraint on the signal anuiitig function are analyzed in
Figure 3. Therein, the modulus af(), f) is plotted exploiting the MATLAB toolbox of [28],
under the assumption of rectangular pulsEs= 57,, and for several values af The plots
highlight that the closer to 0 the higher the degree of similarity between the ambiguitcfions
of the devised and the pre-fixed codes. This is due to the iattdecreasing is tantamount to
reducing the size of the similarity region. In other wordg, f@rce the devised code to be more
and more similar to the pre-fixed one and, as a consequencgetveore and more similar
ambiguity functions.

The subsequent analysis is aimed at assessing the imp&et wint presence of both a strong
and a weak scatterer on the performance achievable thrbegRSA-SC algorithm. To this end,
we assume that a sidelobe scatterer, with complex amplitudend zero-Doppler, is present in
the received signal together with the useful target compo(srong scatterer, whose Doppler
frequency is also zero) and the disturbance component. Bad wcatterer is located in the first
sidelobe peak of the strong scatterer.

P3 and the codes whose ambiguity functions are given in Egg8b-3d (which refer to three
different values of the similarity parameter), have beemsatered. The?,; curves, versugy|?, are
plotted in Figure 4 for two values of the Target to Scatter @oRatio TSR= 10 log;, (|a|?/|s|?),

i.e. TSR= 10 dB and TSR= 30 dB. The curves show that the presence of the weak scatterer
reduces the detection capabilities of the codes.

In Figure 5, we study how the number of randomizatiénaffects the detection performance.
We assumeN = 7, similarity code equal to the Barker codg = [1,1,1,—1,—1,1,—1]7 of

length 7,¢ = 1.5, and the remaining parameters equal to those of Figures 23aftherein
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we also plot the curves corresponding to the benchmark iegioce, the Barker code, and the

approximation bound, i.e.

P;mmd,c _ Q <\/2|Oz|2RCU(SDP) \/—2 In Pfa> .

Remarkably, with jusb-10 randomizations, we get a performance level very close tatinee
obtained with1000 random samples. In other words, the algorithm exhibits § vapid con-
vergence. Notice also thd?, of the PCA-SC is significantly superior than that correspogd
to the approximation bound. This behavior can be explaire®iwving that the quoted bound is
based on a worst case analysis and it often happens in grdbat the actual performance is
substantially better than the worst case. A similar belraves also found in [14] with reference
to multiuser detection.

The detection performance of the FA-PCA-SC is studied inufeg6 whereP, is plotted
versus|a?| for M = 16, several values of, and the remaining simulation parameters equal to
those of Figure 2. Therein the benchmdtk and that obtained using the P3 code are reported
too. It is interesting to observe that the performance ofcbhresidered technique does not show
a continuous variation with the parametemas it happens for the PCA-SC case. Actually, it
exhibits jumps and the actudt; curve depends on the specific interval where the parameter

e lies. Otherwise stated, all thevalues which belong to the intervdl, i = 0,...,M/2 — 1,

2 .
T; = &, €i41) € = \/2 (1 — cos (Mﬂz)) , i-th e-interval,

lead to the same performance curve (i.e. the correspondjncurves perfectly overlap). This

defined as

behavior can be explained observing that the values of théasity parameter which lie in the
samee-interval lead to the same feasible region and the same sippaton bound. The plots
also show that, given two separatethtervals, the one with the largest second extreme cositain
values ofe providing the highesP,.

However, this improvement in the detection performanceciompained by a deterioration
of the coded pulse train ambiguity function. This is shownFigure 7 where such function
is plotted assuming rectangular pulsé&$,= 57, and for some values of which belong to

different e-intervals.
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The effects of the number of randomizations on the FA-PCAg&tformance is analyzed
in Figure 8, whereP, is plotted versugal|? for several values of.,, M = 4, and with the
other simulation parameters equal to those of Figure 5. Borparison purposes, we also plot
the benchmark performance, tli& obtained resorting to an optimal solution of (13) computed
through an exhaustive search, the Barker cétleand theP, predicted by the approximation

bound, i.e.

Pcllaounchd _ Q (\/2|Oz|2RdU(SDP) \/—2 lnPfa) .

Again, the curves show a rapidly convergent behavierf) randomizations are sufficient to get
a performance level very close to that obtained through dhaugstive search. Moreovef, of

the FA-PCA-SC is significantly superior than that predicbgdthe approximation bound.

VIlI. CONCLUSIONS

In this paper, we have considered the design of radar phates eghich optimize the detection
performance under a similarity constraint with a given ssme which exhibits a desirable
ambiguity function. We have considered the cases of bothraorus and finite code alphabet and
have formulated the code design in terms of non-convex @i@doptimization problems. Due
to the NP-hard nature of the problems, we have focused omitpods capable of approximating
the optimal solution in polynomial time. Precisely, we hae¥ised two coding algorithms which
are based on the theory of SDP relaxation and randomiza®emarkably, in both cases we
have derived the approximation bounds which charactehieejtiality of the produced solutions.

At the analysis stage, we have assessed the performance oéth coding schemes both in
terms of detection probability and ambiguity function. Tiesults have highlighted that it is
possible to realize a trade off between the actual detegt@formance and the shape of the
pulse train ambiguity function. Moreover, the new encodieghniques require a quite modest
number of randomizations to provide a satisfactory peréorce level.

Possible future research tracks might concern the pogitol make the algorithms adaptive
with respect to the disturbance covariance matrix, namelgdvise techniques which jointly
estimate the code and the covariance. The introduction oWladge-based constraints should
also be investigated in the code design optimization probles well as the extension of the

framework to the challenging MIMO radar case. Before codiclg, we explicitly notice that it
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is possible to generalize the mathematical framework cemed in this paper to a more general
class of constraints accounting for a possibly differentilsirity parameter on each entry of the

code.
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VIIl. A PPENDIX A: PROOF OFPROPOSITION4.2

Proof. We havef(z) = ¥Y2-2cose — 2sm/2) for o ¢ [0, 27]. It is easily verified thatf(0) = 0

2m—x 2m—x
2sin(z/2)
2m—x

is easily seen thaf’(z) = 251“(9”/2)(’;;"_5;‘;42)(2”_96). Whenz € (0, 7], f'(z) > 0; whenz € (, 27),

f'(x) > 0 < 2sin(z/2) 4+ cos(z/2)(2r — z) > 0 & —tan(x/2) > 7 — z/2 < tans > s for

and f(2r) = 1. Now we wish to show thaf(z) = is strictly increasing ovef0, 2r). It

s € (0,7/2), which is a known inequality. O

IX. APPENDIX B: PROOF OFPROPOSITIONS.2

Proof. Clearly we havef(1) = 0, and f(M) = 2M sin(r4;) > 0, due toM > 3. It is essential
to prove thatf(x) is strictly increasing over the intervdl < = < M. To this end, we set
f(x) := f(z)/2, and check its derivative:

f(x) = 7= sz(::(% = (;ﬁ cos(m ) sin(w ) sin((~ — <)) + Msin(r) sin(ﬂ%)) .

Sincel > 1 >1-1 >0andl> & >, itis seen thatf(z) >0 for 1 <z <%, and then
f(x) is strictly increasing ovef1, 2f]. Notice that
T cos(m7)

~ Ma? sin®(m (2 — &

f'(x)

D (1’2 Sin(ﬂ'%) sin(ﬂ(% — %)) + Mtan(w%) sin(w%)) , T € (%,M)

To prove f'(z) > 0 for & < z < M, it suffices to show that

2 sin(ﬂl) sin(7r(1 — i)) + Mtan(ﬂ%) sin(ﬂ%) <0,z € (%, M)

g(x) =z . ~ T
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Observe thatan(z) < x — 7 for § <z < 7. Then

) 1 1

g(x) < =z sin(ﬁl)sin(w(

1 T .
. i M)) + M(WM — ) sm(wM)
2 sin(ﬁ%) Sin(ﬂ(% - %)) — (M — )7 sin(ﬂ%)
< 2 sin(ﬂé)(w(% _ %)) (M- x)ﬁsm(ﬁ%),

where in the last inequality we have used the factr < « for x € (0, 7), and it further suffices

to show

%)) < (M — x)wsin(w%), % <x <M,

z? sin(w%)(w(; -

or equivalently,

1 1. M
in(r-) < Msin(mr—), — M.
:csm(ﬂx) < M sin(r—), 5 <T<

However, this immediately follows from the observationttiiae functionzsin(Z) is strictly

increasing ove(%, M) for any givenM > 2. The proposition is thus proved. O
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Figure 1. Phase coded pulse trair(t) for N = 4, T, = 3T, andp(t) with rectangular shape.
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Figure 2: P, of PCA-SC versuga|? (dashed curves) foP;, = 10, non-fluctuating targetN = 16, L = 20,
similarity code P3, and several values o€ {0,0.3,0.5,0.7,0.9,1.1,1.3,1.5,1.7, 1.9, 2.0}. Pjenchmark (dotted-

marked curve) PF3 code (solid curve). Notice that, foe = 0, P, perfectly overlaps withPF3 code,
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Figures 3a-3d: Ambiguity function modulus of PCA-SC foN = 16, L = 20, T,, = 5T}, similarity code P3,

and several values ef (a) e =0, (b) e = 0.5, () e = 1.0, (d) e = 1.5.
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Figure 4: P, of PCA-SC versusa|? for Py, = 10~%, non-fluctuating targety = 16, L = 20, similarity code P3,
and two values of TSR, TSR dB (dashed curves) and TSR>dB (solid curves). P3 code (x-marked curves).
Code whose ambiguity function is in Figure 3b (o-marked esjvCode whose ambiguity function is in Figure 3c

(plus-marked curves). Code whose ambiguity function isigufe 3d (asterisk-marked curves).
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Figure 5: P; of PCA-SC versuga|? (dashed curves) foPy, = 1075, non-fluctuating targetN = 7, ¢ = 1.5,
similarity code Barker, and several valueslo€ {1, 5,10, 1000}. Pienchmark (dotted-marked curveyBarker code

Pbound,c

(solid curve).P, (dash-dotted curve).
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Figure 6: P; of FA-PCA-SC versus|a? (dashed curves) forP;, = 1079 non-fluctuating tar-
get, N = 16, M = 16, L = 20, similarity code P3, and several values of ¢

{0.1951,0.5778,0.9383, 1.2627, 1.5386, 1.7553, 1.9047, 1.98080}. Phenchmark (dotted-marked curve)pPr3 code

(solid curve). Notice that, foe € {0, 2(1 — cos 2ﬁ)) P, perfectly overlaps withPF3 code,
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Figures 7a-7d: Ambiguity function modulus of FA-PSC-SC faV = 16, L = 20, 1, = 57}, similarity code

P3, and several values ef (a) e = 0.5778, (b) e = 0.9383, (c) ¢ = 1.2627, (d) e = 1.5386.
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Figure 8: P, of FA-PCA-SC versusa|? (dashed curv
similarity code Barker, and several values bfe {1,

(solid curve).P”*"*¢ (dash-dotted curve)Ps*haustive

es) foPy, = 1075, non-fluctuating targetN = 7, ¢ = 1.5,

5,10}. pbenchmark (dotted-marked curve)ppaerker code

(plus-marked curve).




