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Abstract

This paper deals with the design of coded waveforms which optimize radar performances in the

presence of colored Gaussian disturbance. We focus on the class of phase coded pulse trains and

determine the radar code which approximately maximizes thedetection performance under a similarity

constraint with a pre-fixed radar code. This is tantamount toforcing a similarity between the ambiguity

functions of the devised waveform and of the pulse train encoded with the pre-fixed sequence. We

consider the cases of both continuous and finite phase alphabet, and formulate the code design in

terms of a non-convex, NP-hard quadratic optimization problem. In order to approximate the optimal

solutions, we propose techniques (with polynomial computational complexity) based on the method of

Semidefinite Program (SDP) relaxation and randomization. Moreover, we also derive approximation

bounds yielding a “measure of goodness” of the devised algorithms. At the analysis stage, we assess

the performance of the new encoding techniques both in termsof detection performance and ambiguity

function, under different choices for the similarity parameter. We also show that the new algorithms

achieve an accurate approximation of the optimal solution with a modest number of randomizations.
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I. INTRODUCTION

The problem of radar waveform design has recently received anoticeable attention from the

signal processing community. The invention of new flexible waveform generators and of high

speed signal processing hardware has determined the development of advanced and often very

sophisticated algorithms for radar signal shaping [1], [2].

Waveform optimization in the presence of colored disturbance with known covariance matrix

has been addressed in [3]. Three techniques based on the maximization of the Signal to Noise

Ratio (SNR) are introduced and analyzed. Two of them also exploit the degrees of freedom

provided by a rank deficient disturbance covariance matrix.In [4], a signal design algorithm

relying on the maximization of the SNR under a similarity constraint with a given waveform

is proposed and assessed. The solution potentially emphasizes the target contribution and de-

emphasizes the disturbance, preserving also some characteristics of the desired waveform. In [5]

a signal subspace framework, which allows the derivation ofthe optimal radar waveform (in the

sense of maximizing the SNR at the output of the detector) fora given scenario, is presented

under the Gaussian assumption for the statistics of both thetarget and the clutter. Signal shaping

for target matched-illumination has been considered in [6]-[10]. Moreover, further very recent

and advanced techniques for radar waveform design can be found in [2] and references therein.

A quite different signal design approach relies on the modulation of a pulse train parameters

(amplitude, phase, and frequency) in order to synthesize waveforms with some specified prop-

erties. This technique is known as the radar coding and a substantial bulk of work is nowadays

available in the literature about this topic. Here we mention Barker, Frank, and Costas codes

which lead to waveforms whose ambiguity functions share good resolution properties both in

range and Doppler. This list is not exhaustive and a comprehensive treatment can be found in

[11], [12]. Nevertheless, it is worth pointing out that the ambiguity function is not the only

relevant objective function for code design in operating situations where the disturbance is not

white. This might be the case of optimum radar detection in the presence of colored disturbance,
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where the standard matched filter is no longer optimum and themost powerful radar receiver

requires whitening operations.

In [13], focusing on the class of linearly coded pulse trains(both in amplitude and in phase),

the authors propose a code selection algorithm which maximizes the detection performance but,

at the same time, is capable of controlling both the region ofachievable values for the Doppler

estimation accuracy and the degree of similarity with a pre-fixed radar code. The algorithm first

relaxes the original problem into a convex one which belongsto the SDP class; then it derives an

optimum code through a rank-one decomposition of an optimalsolution of the relaxed problem.

Nevertheless, in several practical situations, the radar amplifiers usually work in saturation

conditions and hence an amplitude modulation might be difficult (even if not impossible) to

perform. To this end, in the present paper, we focus on constant modulus waveform and consider

the synthesis of phase coding schemes for radar coherent pulse trains. We study the cases of both

continuous and finite phase alphabet, and formulate the codedesign in terms of a non-convex,

NP-hard, quadratic optimization problem. In order to approximate the optimal solutions, we

propose techniques (with polynomial computational complexity) based on SDP relaxation and

randomization1. We also evaluate, in both the considered cases, the approximation bound which

represents a “measure of goodness” of an approximation technique as it characterizes the quality

of the solutions produced by the method. At the analysis stage, we assess the performance of

the new encoding algorithms both in terms of detection capabilities and ambiguity function. The

results show that they achieve an accurate approximation ofthe optimal solution with a quite

modest number of randomizations. Moreover, depending on the design constraints, it is possible

to trade off detection performance for desirable properties of the waveform ambiguity function.

The paper is organized as follows. In Section II, we present the model for both the transmitted

and the received coded signal. In Section III, we discuss thecriteria exploited for phase code

design. In Sections IV and V, we introduce the new algorithmsand derive the approximation

bounds with reference to the cases of both continuous and finite code alphabet. In Section VI,

we assess the performance of the proposed encoding methods also in comparison with standard

radar codes. Finally, in Section VII, we draw conclusions and outline possible future research

1SDP relaxation and randomization techniques have also beenused in other signal processing fields. For instance in maximum

likelihood multiuser detection [14], Multiple Input Multiple Output (MIMO) decoding [15], and transmit beamforming [16].
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tracks.

II. SYSTEM MODEL

We consider a radar system which transmits a phase coded coherent burst of pulses

s(t) = atu(t) exp[j(2πf0t+ φ)] ,

whereat is the transmit signal amplitude,j =
√
−1,

u(t) =
N−1
∑

i=0

a(i)p(t− iTr) ,

is the signal’s complex envelope (see Figure 1),p(t) is the signature of the transmitted pulse,

Tr is the Pulse Repetition Time (PRT),[a(0), a(1), . . . , a(N − 1)] ∈ CN is the radar phase code

(i.e. a(i) = exp[jφi], i = 0, . . . , N − 1), f0 is the carrier frequency, andφ is a random phase.

Moreover, the pulse waveformp(t) is of durationTp ≤ Tr and has unit energy, i.e.
∫ Tp

0

|p(t)|2dt = 1 ,

where| · | denotes the modulus of a complex number. The signal backscattered by a target with

a two-way time delayτ and received by the radar is

r(t) = αre
j2π(f0+fd)(t−τ)u(t− τ) + n(t) ,

whereαr is the complex echo amplitude (accounting for the transmit amplitude, phase, target

reflectivity, and channels propagation effects),fd is the target Doppler frequency, andn(t) is

additive disturbance due to clutter and thermal noise.

This signal is down-converted to baseband and filtered through a linear system with impulse

responseh(t) = p∗(−t), where(·)∗ denotes complex conjugate. Let the filter output be

v(t) = αre
−j2πf0τ

N−1
∑

i=0

a(i)ej2πifdTrχp(t− iTr − τ, fd) + w(t) ,

whereχp(λ, f) is the pulse waveform ambiguity function [11], i.e.

χp(λ, f) =

∫ +∞

−∞
p(ψ)p∗(ψ − λ)ej2πfψdψ,
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andw(t) is the down-converted and filtered disturbance component. The signalv(t) is sampled

at tk = τ + kTr, k = 0, . . . , N − 1, providing the observables2

v(tk) = αa(k)ej2πkfdTrχp(0, fd) + w(tk), k = 0, . . . , N − 1 ,

whereα = αre
−j2πf0τ . Sinceχ(0, fd) does not depend ona(k)’s and, as a consequence, does not

affect the design of radar code, we assume hereafter thatχ(0, fd) = 1 for convenience. Hence,

we can rewrite the samplesv(tk) as

v(tk) = αa(k)ej2πkfdTr + w(tk), k = 0, . . . , N − 1 .

Moreover, denoting byc = [a(0), a(1), . . . , a(N − 1)]T the N-dimensional column vector

containing the code elements3, p = [1, ej2πfdTr , . . . , ej2π(N−1)fdTr ]T the temporal steering vector,

v = [v(t0), v(t1), . . . , v(tN−1)]
T , and w = [w(t0), w(t1), . . . , w(tN−1)]

T , we get the following

vectorial model for the backscattered signal

v = αc ⊙ p + w , (1)

where⊙ denotes the Hadamard element-wise product [17].

III. RADAR PHASE CODE DESIGN CRITERIA

As already said in the introduction, we are looking for the phase code which optimizes the

detection performance, under a similarity constraint witha given radar code exhibiting a good

ambiguity function. In this section, we formulate mathematically the aforementioned criterion

highlighting how the detection probability can be maximized and the similarity constraint can

be enforced. To this end, we recall that the problem of detecting a target in the presence of

observables described by the model (1) can be formulated in terms of the following binary

hypotheses test


















H0 : v = w

H1 : v = αc ⊙ p + w

. (2)

2We neglect range straddling losses and also assume that there are no target range ambiguities. This last assumption is

usually met in Low Pulse Repetition Frequency (LPRF) radars(and in particular in medium-long range radars for early warning

applications), but might be restrictive for High PRF (HPRF)systems.

3(·)T is the transpose operator.
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We assume that the disturbance vectorw is a zero-mean complex circular Gaussian vector with

known positive definite covariance matrix

E[ww†] = M

(E[·] denotes mathematical expectation and(·)† conjugate transpose). This implies that the

Generalized Likelihood Ratio Test (GLRT) detector for the problem (2), which coincides with

the optimum test [18] (according to the Neyman-Pearson criterion) if the phase ofα is uniformly

distributed in[0, 2π), is given by

|v†M−1(c ⊙ p)|2
H1
>
<
H0

G , (3)

whereG is the detection threshold set according to a desired value of the false alarm Probability

(Pfa). An analytical expression of the detection Probability (Pd), for a given value ofPfa, is

available for both the cases of non-fluctuating and fluctuating target. In the former case (NFT),

Pd = Q

(

√

2|α|2(c ⊙ p)†M−1(c ⊙ p),
√

−2 lnPfa

)

, (4)

while, for the case of Rayleigh fluctuating target (RFT) withE[|α|2] = σ2
a,

Pd = exp

(

− lnPfa

1 + σ2
a(c ⊙ p)†M−1(c ⊙ p)

)

, (5)

whereQ(·, ·) denotes the MarcumQ function of order1. These last expressions show that, given

Pfa, Pd depends on the radar code, the disturbance covariance matrix and the temporal steering

vector only through the SNR, defined as

SNR=



















|α|2(c ⊙ p)†M−1(c ⊙ p) NFT

σ2
a(c ⊙ p)†M−1(c ⊙ p) RFT

(6)

Moreover,Pd is an increasing function of SNR and, as a consequence, the maximization ofPd

can be obtained maximizing the quadratic form

(c ⊙ p)†M−1(c ⊙ p) = c†Rc , (7)

where R = M−1 ⊙ (pp†)∗, over the radar code. We just highlight thatR is the Hadamard

product of two positive semidefinite matrices, and henceR is itself positive semidefinite [19, p.

1352, A.77].
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If the maximization of (7) is performed under only an energy constraint for the transmitted

vector (i.e. ‖c‖2 = N , where ‖ · ‖ denotes the Euclidean norm of a complex vector), the

optimum code is proportional to the eigenvector ofR corresponding to the largest eigenvalue.

Unfortunately, this solution does not usually belong to theclass of phase codes and, even if it

provides the best detection performance, it does not usually exhibit good ambiguity properties

(i.e. a narrow main peak both in range and in Doppler and relatively low sidelobe peaks).

Enforcing a similarity constraint with a given phase codec0, which shares a good ambiguity,

seems a reasonable way to optimizePd and, at the same time, of controlling the ambiguity

distortion. This is tantamount to optimizing the detectionperformance in a suitable neighborhood

of a known code, where the ambiguity function exhibits acceptable behavior. In this paper we

exploit thel∞ norm4 to impose the similarity, namely we force

||c − c0||∞ ≤ ǫ,

where 0 ≤ ǫ ≤ 2 is a real parameter ruling the degree of similarity. We also consider two

possibilities for the entries ofc. The former just assumes thatc is a phase code, namely the

modulus of thek-th entry|c(k)| = 1, k = 1, . . . , N . The latter considers the case of a finite code

alphabet of sizeM , i.e. c(k) ∈ {1, ej2π 1
M , . . . , ej2π

M−1
M }, k = 1, . . . , N . In this last situation,

we also suppose that the entries of the similarity code belong to the same alphabet as the

sought vector. In the next two sections, we introduce phase coding algorithms for each of the

aforementioned situations.

IV. PHASE CODING ALGORITHM WITH SIMILARITY CONSTRAINT (PCA-SC)

In this section, we focus on the case|c(k)| = 1, k = 1, . . . , N , and formulate the phase code

design in terms of the following complex quadratic optimization problem

max c†Rc

s.t. ||c − c0||∞ ≤ ǫ,

|c(k)| = 1, k = 1, . . . , N ,

(8)

where the parameterǫ rules the set of admissible codes. Specifically, decreasingǫ is tantamount

to reducing the size of the feasible region. The similarity constraint in (8) can be equivalently

4Given anN -dimensional complex vectorx its l∞ norm [17] is defined as||x||∞ = maxk∈(1,...,N) |x(k)|.
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written5 as |c(k) − c0(k)| ≤ ǫ, or ℜ [c∗(k)c0(k)] ≥ 1 − ǫ2/2, for k = 1, . . . , N , which implies

arg c(k) ∈ [γk, γk + δc], whereγk = arg c0(k) − arccos(1 − ǫ2/2) and δc = 2 arccos (1 − ǫ2/2)

for k = 1, . . . , N . Based on this observation, problem (8) can be recast as

max c†Rc

s.t. arg c(k) ∈ [γk, γk + δc] ,

|c(k)| = 1, k = 1, . . . , N .

(9)

Notice that in the instance ofǫ = 2 (or equivalentlyδc = 2π), the phase constraints of (9) are

redundant and the problem reduces to

max c†Rc

s.t. |c(k)| = 1, k = 1, . . . , N .
(10)

Even the simpler formulation (10) is NP-hard [20], [21], butthere exist efficient approximation

algorithms, based on relaxation and randomization, which achieve an accurate approximation of

the optimal solution with a modest number of randomizations[21], [22].

According to the NP-hard nature of problem (9), one cannot find polynomial time algorithms

for computing its optimal solutions. As a consequence, in the following, we focus on approx-

imation techniques and propose the following relaxation and randomization algorithm which

provides a randomized feasible solution of (9).

Algorithm I: PCA-SC

1) Solve the SDP problem below and denote byẐ an optimal solution:

(SDP) max tr(RZ)

s.t. Zkk = 1, k = 1, . . . , N,

Z � 0

(Zkk denotes the(k, k)-th entry of Z and Z � 0 indicates thatZ is positive

semidefinite).

2) Generate a random vectorξ ∈ CN from the complex normal distributionNC(0,Y )

whereY = Ẑ ⊙ ycy
†
c, whereyc = [e−jγ1 , . . . , e−jγN ]T .

3) Assign eachc(k) = y∗
c(k)σ(ξk), k = 1, . . . , N , where

σ(x) = ej
arg x

2π
δc , x ∈ C.

5Let x be a complex number,ℜ[x] is the real part ofx, andarg x ∈ [0, 2π) denotes the phase ofx.
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We point out that, in order to improve the approximation quality, the randomization steps (2 and

3) are repeated several times, and the randomized feasible solution yielding the largest objective

function will be chosen as the approximate solution. As it will be shown in the performance

analysis, the proposed randomization can achieve an accurate approximation of the optimal

solution with a quite modest number of randomizations.

As to the computational complexity connected with the implementation of the algorithm, the

solution of the SDP relaxation requiresO(N3.5) floating point operations (flops)6 whereas each

randomization involvesO(N2) flops [14]. It follows that, for a modest number of randomizations,

the most relevant contribution to the computational is connected with the SDP solution.

Finally, we explicitly acknowledge that, at the current state of the art, most radar systems

use phase coded waveforms, where the phases are taken from a finite and regularly spaced

alphabet. This represents a limiting factor that prevents the practical realization of the PCA-SC.

Nevertheless, even if the current technology is not able to implement on the field the proposed

algorithm, it may not be definitely ruled out in the near future.

A. Approximation Bound

A “measure of goodness” of an approximation algorithm is provided by the approximation

bound which characterizes the quality of the produced solutions. In the literature, a randomized

approximation method for a maximization problem has an approximation bound (or performance

guarantee, or worst case ratio)R ∈ (0, 1], if for all instances of the problem, it always delivers

a feasible solution whose expected value is at leastR times the maximum value. Such an

algorithm is usually called randomizedR-approximation algorithm. More precisely, letv(·) be

the maximum value of an instance of a given problem(·), then a feasible solutionz produced

by a randomizedR-approximation algorithm, complies with

E[the objective function evaluated atz] ≥ Rv(·) .

It is clear that an algorithm produces abetter approximation, if the approximation bound is

closer to 1. In this subsection, we aim at establishing an approximation bound for Algorithm I.

6Herein, we use the usual Landau notationO(n); hence, an algorithm isO(n) if its implementation requires a number of

flops proportional ton [23].
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Theorem 4.1: Denoting byz an output of Algorithm I and byv(SDP) the optimal value of

SDP, the following inequality holds true

E[z†Rz] ≥ Rcv (SDP),

where

Rc =
π(1 − cos δc)

2(2π − δc)2
,

that is , Algorithm I has an approximation boundRc.

Proof. Letuk = w∗

4
√
π
y∗
c(k), wherew is the complex number

w =
2π(− sin δc + j(1 − cos δc))

2π − δc
.

To computeE[z(k)z∗(l)], we exploit the equality

E[z(k)z∗(l)] = −uku∗lE[ξ(k)ξ∗(l)] + ukE[ξ(k)z∗(l)] +

u∗lE[ξ∗(l)z(k)] + E[(ukξ(k) − z(k))(ulξ(l) − z(l))∗]. (11)

We now evaluate the first three terms in the right-hand side ofthe above equality

(1) −uku∗lE[ξ(k)ξ∗(l)] = − 1
16π

|w|2Ẑkl.

(2) ukE[ξ(k)z∗(l)] = 1
16π

|w|2Ẑkl. Since




ξ(k)

ξ(l)



 ∈ NC



0,





1 Y kl

Y lk 1







 ,

we may represent the components as

ξ(k) = Y klη +
√

1 − |Y kl|2λ, ξ(l) = η,





η

λ



 ∈ NC



0,





1 0

0 1







 .

It follows that

E[ξ(k)z∗(l)] = E[(Y klη +
√

1 − |Y kl|2λ)yc(l)σ
∗(η)]

= Y klyc(l)E[ησ∗(η)] +
√

1 − |Y kl|2yc(l)E[λσ∗(η)]

= Y klyc(l)E[ησ∗(η)],
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where the statistical independence betweenη andλ is exploited in the last equality. Notice

that

E[ησ∗(η)]

=

∫ ∞

0

∫ 2π

0

ρejασ∗(ρejα)
ρ

π
e−ρ

2

dαdρ

=

∫ ∞

0

∫ 2π

0

ρejασ∗(ejα)
ρ

π
e−ρ

2

dαdρ

=
1

π

∫ ∞

0

ρ2e−ρ
2

dρ

∫ 2π

0

ejασ∗(ejα)dα

=
1

4
√
π

∫ 2π

0

ejασ∗(ejα)dα

=
w

4
√
π
,

where we have used the polar coordinate representationη = ρejα in the first equality,
∫ ∞
0
ρ2e−ρ

2
dρ =

√
π

4
in the second last equality, and

∫ 2π

0
ejασ∗(ejα)dα = w in the last

equality. Therefore, we have

ukE[ξ(k)z∗(l)] = ukY klyc(l)
w

4
√
π

=
1

16π
|w|2Ẑkl.

(3) u∗lE[ξ∗(l)z(k)] = 1
16π

|w|2Ẑkl.

Exploiting the representation

ξ(k) = η, ξ(l) = Y ∗
klη +

√

1 − |Y kl|2λ,





η

λ



 ∈ NC



0,





1 0

0 1







 ,

it can be shown thatu∗lE[ξ∗(l)z(k)] = 1
16π

|w|2Ẑkl.

It thus follows from (11) that

E[z(k)z∗(l)] =
1

16π
|w|2Ẑkl + E[(ukξ(k) − z(k))(ulξ(l) − z(l))∗].

Denoting bys the N-dimensional complex vector with entriess(k) = ukξ(k) − z(k), k =

1, . . . , N , the above equality implies that

E[zz†] =
1

16π
|w|2Ẑ + E[ss†].

Now, sinceR � 0, we have

E[z†Rz] = E[tr(Rzz†)] =
|w|2
16π

tr(RẐ) + E[tr(Rss†)] ≥ |w|2
16π

tr(RẐ) =
|w|2
16π

v(SDP).
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This completes the proof. �

It remains to show thatRc ∈ (0, 1). To this end, we claim thatRc ∈ (0, π
4
] for any given

δc ∈ (0, 2π]. This result stems from the following

Proposition 4.2: The univariate function

f(x) =

√

2(1 − cosx)

2π − x

is strictly increasing over(0, 2π), andf(0) = 0, f(2π) = 1.

Proof. See Appendix A. �

We remark that the obtained approximation bound is independent of γk’s. Further, as already

pointed out, whenδc = 2π, namely phase constraints in (9) redundant, the bound isπ
4

which

agrees with the results of [21] and [22].

V. FINITE ALPHABET PHASE CODING ALGORITHM WITH SIMILARITY CONSTRAINT

(FA-PCA-SC)

In this section, we focus on the finite alphabet case namelyc(k) ∈ {1, ej2π 1
M , . . . , ej2π

M−1
M },

k = 1, . . . , N , and formulate the design of the phase code in terms of the following complex

quadratic optimization problem

max c†Rc

s.t. ||c − c0||∞ ≤ ǫ,

c(k) ∈ {1, ej2π 1
M , . . . , ej2π

M−1
M }, k = 1, . . . , N

(12)

wherec0(k) ∈ {1, ej2π 1
M , . . . , ej2π

M−1
M }, k = 1, . . . , N , andM ≥ 3.

Notice that the constraint|c(k) − c0(k)| ≤ ǫ, k = 1, . . . , N , is equivalent toℜ [c(k)c∗
0(k)] ≥

1 − ǫ2/2 for eachk, which in turn amounts to enforcing

c(k) ∈ {ej2π
βk
M , ej2π

βk+1

M , . . . , ej2π
βk+δd−1

M } ,

where

βk =
M arg(c0(k))

2π
−

⌊M arccos(1 − ǫ2/2)

2π

⌋
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depends onc0(k) and ǫ,

δd =







1 + 2⌊M arccos(1−ǫ2/2)
2π

⌋ ǫ ∈ [0, 2)

M ǫ = 2

depends only onǫ, and⌊·⌋ denotes the integer floor operation. Based on this observation, problem

(12) can be recast as

max c†Rc

s.t. arg c(k) ∈ 2π
M

[βk, βk + 1, . . . , βk + δd − 1] ,

|c(k)| = 1, k = 1, . . . , N

(13)

It can be exactly solved by an exhaustive search in which the objective function is evaluated for

all possible combinations of thec(k)’s ensuring feasibility. Nevertheless, this kind of searchis

prohibitive due to its exponentially increasing computational complexity (i.e.O(MN )). Hence, it

would be desirable to devise algorithms that could efficiently find (in polynomial time) the global

optimal solution. Unfortunately, such algorithms do not exist because the considered problem is

NP-hard. To clarify this point, we consider the special instance of redundant similarity constraints

in (13), i.e.ǫ = 2, where the problem reduces to

max c†Rc

s.t. c(k) ∈ {1, ej2π 1
M , . . . , ej2π

M−1
M }, k = 1, . . . , N

(14)

Thus, we observe that (14) is NP-hard since it includes Max 3-Cut problems [24], [25] as

special cases. Due to the NP-hard nature of (13), in the following we focus our attention

to approximation algorithms sharing a polynomial computational complexity. Specifically, we

propose the following relaxation and randomization algorithm which provides a randomized

feasible solution of (13).
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Algorithm II: FA-PCA-SC
1) Solve the SDP problem below and denote byẐ an optimal solution:

(SDP) max tr(RZ)

s.t. Zkk = 1, k = 1, . . . , N,

Z � 0.

2) Generate a random vectorξ ∈ CN from the complex normal distributionNC(0,W )

whereW = Ẑ ⊙ ydy
†
d, whereyd = [e−j

2π
M
β1, . . . , e−j

2π
M
βN ]T ,

3) Assign eachc(k) = y∗
d(k)µ(ξk), whereµ(x) is defined as

µ(x) =



























1, if arg x ∈ [0, 2π 1
δd

);

ej2π
1
M , if arg x ∈ [2π 1

δd
, 2π 2

δd
);

...

ej2π
δd−1

M , if arg x ∈ [2π δd−1
δd
, 2π).

As for the PCA-SC, the computational complexity is mostly related to the solution of the SDP

problem (O(N3.5) flops). Moreover, also with reference to the finite alphabet case, a modest

number of randomizations is sufficient to ensure satisfactory performances.

A. Approximation Bound

In this subsection, we derive the approximation bound for Algorithm II. Precisely, we prove

the following

Theorem 5.1: Denoting byz an output of Algorithm II and byv (SDP) the optimal value of

SDP, the following inequality holds true

E[z†Rz] ≥ Rdv (SDP),

where

Rd =
sin2(π 1

δd
) sin2(π δd

M
)

4π sin2(π( 1
δd
− 1

M
))
.

Namely, Algorithm II has an approximation boundRd.

Proof. The proof can be done with the same technique as Theorem (4.1) replacingσ(·) with

µ(·), Y with W , letting

w = j(1 − e
j2π 1

δd )
1 − ej2π

δd
M

ej2π
δd−1

M (e
j2π 1

δd − ej2π
1
M )

,
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and observing that
∫ 2π

0

ejαµ∗(ejα)dα

=

∫ 2π 1
δd

0

ejαdα+

∫ 2π 2
δd

2π 1
δd

ejαe−j2π
1
M dα+ · · · +

∫ 2π

2π
δd−1

δd

ejαe−j2π
δd−1

M dα

= j(1 − e
j2π 1

δd ) + j(1 − e
j2π 1

δd )e−j2π
1
M e

j2π 1
δd + · · · + j(1 − e

j2π 1
δd )e−j2π

δd−1

M e
j2π

δd−1

δd

= j(1 − e
j2π 1

δd )(1 + e−j2π
1
M e

j2π 1
δd + · · · + e−j2π

δd−1

M e
j2π

δd−1

δd )

= j(1 − e
j2π 1

δd )
1 − ej2π

δd
M

ej2π
δd−1

M (e
j2π 1

δd − ej2π
1

M )
= w.

�

It still remains to prove thatRd ∈ (0, 1). To this end, we claim thatRd ∈
(

0,
M2 sin2(π 1

M
)

4π

]

for

any givenδd ∈ (1,M ]. This result stems directly from the following

Proposition 5.2: The univariate function

f(x) =
2 sin(π 1

x
) sin(π x

M
)

sin(π( 1
x
− 1

M
))

is strictly increasing over(1,M), andf(1) = 0, f(M) = 2M sin(π 1
M

).

Proof. See Appendix B. �

We remark that, whenδd is equal toM , namely inactive similarity constraint, the approx-

imation bound is
M2 sin2(π 1

M
)

4π
, which coincides with that derived in [21] and [22]. Moreover,

0 <
M2 sin2(π 1

M
)

4π
≤ 1 for anyM ≥ 3, and

M2 sin2(π 1
M

)

4π
tends toπ

4
asM goes to infinity.

Let us just take a look at the caseM = 16. The bound isR = 0.7740 if ǫ = 2; R = 0.7641

if ǫ ∈ [1.9616, 2); R = 0.6856 if ǫ ∈ [1.8478, 1.9616); R = 0.5497 if ǫ ∈ [1.6629, 1.8478);

R = 0.3869 if ǫ ∈ [1.4142, 1.6629); R = 0.2310 if ǫ ∈ [1.1111, 1.4142); R = 0.1084 if

ǫ ∈ [0.7654, 1.1111); R = 0.0326 if ǫ ∈ [0.3902, 0.7654); if ǫ ∈ [0, 0.3902), thenδd = 1, i.e., the

problem is trivial because it contains only one feasible solution.

Before concluding this section, it is necessary to highlight that an on-line waveform design

might be computationally intensive especially for airborne applications. However, what we would

remark is that the design of the code does not have to be done necessarily on-line. For instance,
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one can construct (off-line) a codebook, based on some suitable a-priori covariance models, and

just to select the element of the codebook. Further, the algorithm might be on-line applied to

other kind of radars (not necessarily airborne), where the environment is not rapidly varying

and there is sufficient time to perform the design of the code before a significant change in the

operating conditions.

VI. PERFORMANCE ANALYSIS

The present section is aimed at analyzing the performance ofthe proposed encoding schemes.

To this end we assume that the disturbance covariance matrixis exponentially shaped with

one-lag correlation coefficientρ = 0.8, i.e.

M ij = ρ|i−j| ,

and fix Pfa of the receiver (3) to10−6. As to the temporal steering vectorp, we set7 the

normalized Doppler frequencyfdTr = 0.15. The analysis is conducted in terms of bothPd and

ambiguity function of the phase coded pulse train defined as

χ(λ, f) =

∫ ∞

−∞
u(ψ)u∗(ψ − λ)ej2πfψdψ =

N
∑

l=1

N
∑

m=1

c(l)c∗(m)χp[λ− (l −m)Tr, f ] ,

The convex optimization MATLAB toolbox SeDuMi [26] is used for solving the SDP relaxation.

In Figure 2, the detection performance of the PCA-SC is plotted versus|α|2 with reference to

the case of non-fluctuating target,N = 16, number of randomizationsL = 20, several values of

ǫ, and considering as similarity sequence a P3 code ([27] and [11, p. 127, 6.6 ]). For comparison,

we also plot thePd of the similarity code and the benchmark performance obtained maximizing

the SNR without the constant modulus constraint, namely exploiting the optimal value of the

problem

max c†Rc

s.t. ‖c‖2 = N.
(15)

Of course, the considered benchmark performance is not in general achievable by a phase code,

but it can be used to evaluate the performance loss that the constant modulus assumption implies

7We have also considered other values for the target normalized Doppler frequency. The results, not reported here, confirm

the performance behavior showed in this section.
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for ǫ = 2. Finally, all the curves have been obtained averaging the results of Nexp = 500

statistically independent experiments. The results show that forcing stronger and stronger simi-

larity constraints, we get worse and worse detection performances. This was actually expected

since decreasingǫ is tantamount to reducing the size of the feasible region. Moreover, this

perfectly agrees with the behavior of the approximation bound which predicts worse and worse

Pd decreasingǫ. When ǫ = 0, the performance ends up coincident with that of the similarity

code which is the only feasible solution. The curves also highlight that the performance loss

implied by the constant modulus assumption is a fraction of dB for ǫ = 2.

The effects of the similarity constraint on the signal ambiguity function are analyzed in

Figure 3. Therein, the modulus ofχ(λ, f) is plotted exploiting the MATLAB toolbox of [28],

under the assumption of rectangular pulses,Tr = 5Tp, and for several values ofǫ. The plots

highlight that the closerǫ to 0 the higher the degree of similarity between the ambiguity functions

of the devised and the pre-fixed codes. This is due to the fact that decreasingǫ is tantamount to

reducing the size of the similarity region. In other words, we force the devised code to be more

and more similar to the pre-fixed one and, as a consequence, weget more and more similar

ambiguity functions.

The subsequent analysis is aimed at assessing the impact of the joint presence of both a strong

and a weak scatterer on the performance achievable through the PSA-SC algorithm. To this end,

we assume that a sidelobe scatterer, with complex amplitudeαs and zero-Doppler, is present in

the received signal together with the useful target component (strong scatterer, whose Doppler

frequency is also zero) and the disturbance component. The weak scatterer is located in the first

sidelobe peak of the strong scatterer.

P3 and the codes whose ambiguity functions are given in Figures 3b-3d (which refer to three

different values of the similarity parameter), have been considered. ThePd curves, versus|α|2, are

plotted in Figure 4 for two values of the Target to Scatter power Ratio TSR= 10 log10 (|α|2/|αs|2),
i.e. TSR= 10 dB and TSR= 30 dB. The curves show that the presence of the weak scatterer

reduces the detection capabilities of the codes.

In Figure 5, we study how the number of randomizationsL affects the detection performance.

We assumeN = 7, similarity code equal to the Barker codec0 = [1, 1, 1,−1,−1, 1,−1]T of

length 7, ǫ = 1.5, and the remaining parameters equal to those of Figures 2 and3. Therein
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we also plot the curves corresponding to the benchmark performance, the Barker code, and the

approximation bound, i.e.

P bound,c
d = Q

(

√

2|α|2Rcv(SDP),
√

−2 lnPfa

)

.

Remarkably, with just5-10 randomizations, we get a performance level very close to thecurve

obtained with1000 random samples. In other words, the algorithm exhibits a very rapid con-

vergence. Notice also thatPd of the PCA-SC is significantly superior than that corresponding

to the approximation bound. This behavior can be explained observing that the quoted bound is

based on a worst case analysis and it often happens in practice that the actual performance is

substantially better than the worst case. A similar behavior was also found in [14] with reference

to multiuser detection.

The detection performance of the FA-PCA-SC is studied in Figure 6 wherePd is plotted

versus|α2| for M = 16, several values ofǫ, and the remaining simulation parameters equal to

those of Figure 2. Therein the benchmarkPd and that obtained using the P3 code are reported

too. It is interesting to observe that the performance of theconsidered technique does not show

a continuous variation with the parameterǫ as it happens for the PCA-SC case. Actually, it

exhibits jumps and the actualPd curve depends on the specific interval where the parameter

ǫ lies. Otherwise stated, all theǫ values which belong to the intervalIi, i = 0, . . . ,M/2 − 1,

defined as

Ii = [ǫi, ǫi+1) , ǫi =

√

2

(

1 − cos

(

2π

M
i

))

, i-th ǫ-interval,

lead to the same performance curve (i.e. the correspondingPd curves perfectly overlap). This

behavior can be explained observing that the values of the similarity parameter which lie in the

sameǫ-interval lead to the same feasible region and the same approximation bound. The plots

also show that, given two separatedǫ-intervals, the one with the largest second extreme contains

values ofǫ providing the highestPd.

However, this improvement in the detection performance is accompained by a deterioration

of the coded pulse train ambiguity function. This is shown inFigure 7 where such function

is plotted assuming rectangular pulses,Tr = 5Tp, and for some values ofǫ which belong to

different ǫ-intervals.
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The effects of the number of randomizations on the FA-PCA-SCperformance is analyzed

in Figure 8, wherePd is plotted versus|α|2 for several values ofL, M = 4, and with the

other simulation parameters equal to those of Figure 5. For comparison purposes, we also plot

the benchmark performance, thePd obtained resorting to an optimal solution of (13) computed

through an exhaustive search, the Barker codePd, and thePd predicted by the approximation

bound, i.e.

P bound,d
d = Q

(

√

2|α|2Rdv(SDP),
√

−2 lnPfa

)

.

Again, the curves show a rapidly convergent behavior;5-10 randomizations are sufficient to get

a performance level very close to that obtained through the exhaustive search. Moreover,Pd of

the FA-PCA-SC is significantly superior than that predictedby the approximation bound.

VII. CONCLUSIONS

In this paper, we have considered the design of radar phase codes which optimize the detection

performance under a similarity constraint with a given sequence which exhibits a desirable

ambiguity function. We have considered the cases of both continuous and finite code alphabet and

have formulated the code design in terms of non-convex quadratic optimization problems. Due

to the NP-hard nature of the problems, we have focused on techniques capable of approximating

the optimal solution in polynomial time. Precisely, we havedevised two coding algorithms which

are based on the theory of SDP relaxation and randomization.Remarkably, in both cases we

have derived the approximation bounds which characterize the quality of the produced solutions.

At the analysis stage, we have assessed the performance of the new coding schemes both in

terms of detection probability and ambiguity function. Theresults have highlighted that it is

possible to realize a trade off between the actual detectionperformance and the shape of the

pulse train ambiguity function. Moreover, the new encodingtechniques require a quite modest

number of randomizations to provide a satisfactory performance level.

Possible future research tracks might concern the possibility to make the algorithms adaptive

with respect to the disturbance covariance matrix, namely to devise techniques which jointly

estimate the code and the covariance. The introduction of knowledge-based constraints should

also be investigated in the code design optimization problem, as well as the extension of the

framework to the challenging MIMO radar case. Before concluding, we explicitly notice that it
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is possible to generalize the mathematical framework considered in this paper to a more general

class of constraints accounting for a possibly different similarity parameter on each entry of the

code.
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VIII. A PPENDIX A: PROOF OFPROPOSITION4.2

Proof. We havef(x) =
√

2−2 cos x
2π−x = 2 sin(x/2)

2π−x for x ∈ [0, 2π]. It is easily verified thatf(0) = 0

andf(2π) = 1. Now we wish to show thatf(x) = 2 sin(x/2)
2π−x is strictly increasing over(0, 2π). It

is easily seen thatf ′(x) = 2 sin(x/2)+cos(x/2)(2π−x)
(2π−x)2 . Whenx ∈ (0, π], f ′(x) > 0; whenx ∈ (π, 2π),

f ′(x) > 0 ⇔ 2 sin(x/2) + cos(x/2)(2π − x) > 0 ⇔ − tan(x/2) ≥ π − x/2 ⇔ tan s > s for

s ∈ (0, π/2), which is a known inequality. �

IX. A PPENDIX B: PROOF OFPROPOSITION5.2

Proof. Clearly we havef(1) = 0, andf(M) = 2M sin(π 1
M

) > 0, due toM ≥ 3. It is essential

to prove thatf(x) is strictly increasing over the interval1 < x < M . To this end, we set

f(x) := f(x)/2, and check its derivative:

f ′(x) =
π

Mx2 sin2(π( 1
x
− 1

M
))

(

x2 cos(π
x

M
) sin(π

1

x
) sin(π(

1

x
− 1

M
)) +M sin(π

x

M
) sin(π

1

M
)

)

.

Since1 > 1
x
> 1

x
− 1

M
> 0 and1 > x

M
> 1

M
, it is seen thatf ′(x) > 0 for 1 < x ≤ M

2
, and then

f(x) is strictly increasing over(1, M
2

]. Notice that

f ′(x) =
π cos(π x

M
)

Mx2 sin2(π( 1
x
− 1

M
))

(

x2 sin(π
1

x
) sin(π(

1

x
− 1

M
)) +M tan(π

x

M
) sin(π

1

M
)

)

, x ∈ (
M

2
,M).

To provef ′(x) > 0 for M
2
< x < M , it suffices to show that

g(x) := x2 sin(π
1

x
) sin(π(

1

x
− 1

M
)) +M tan(π

x

M
) sin(π

1

M
) < 0, x ∈ (

M

2
,M)
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Observe thattan(x) < x− π for π
2
< x < π. Then

g(x) < x2 sin(π
1

x
) sin(π(

1

x
− 1

M
)) +M(π

x

M
− π) sin(π

1

M
)

= x2 sin(π
1

x
) sin(π(

1

x
− 1

M
)) − (M − x)π sin(π

1

M
)

< x2 sin(π
1

x
)(π(

1

x
− 1

M
)) − (M − x)π sin(π

1

M
),

where in the last inequality we have used the factsin x < x for x ∈ (0, π), and it further suffices

to show

x2 sin(π
1

x
)(π(

1

x
− 1

M
)) < (M − x)π sin(π

1

M
),

M

2
< x < M,

or equivalently,

x sin(π
1

x
) < M sin(π

1

M
),

M

2
< x < M.

However, this immediately follows from the observation that the functionx sin(π
x
) is strictly

increasing over(M
2
,M) for any givenM ≥ 2. The proposition is thus proved. �
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Figure 1: Phase coded pulse trainu(t) for N = 4, T
r

= 3T
p

andp(t) with rectangular shape.
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Figure 2: Pd of PCA-SC versus|α|2 (dashed curves) forPfa = 10−6, non-fluctuating target,N = 16, L = 20,

similarity code P3, and several values ofǫ ∈ {0, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.0}. P benchmark
d (dotted-

marked curve).PP3 code
d (solid curve). Notice that, forǫ = 0, Pd perfectly overlaps withPP3 code

d .
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Figures 3a-3d: Ambiguity function modulus of PCA-SC forN = 16, L = 20, Tr = 5Tp, similarity code P3,

and several values ofǫ: (a) ǫ = 0, (b) ǫ = 0.5, (c) ǫ = 1.0, (d) ǫ = 1.5.
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Figure 4: Pd of PCA-SC versus|α|2 for Pfa = 10−6, non-fluctuating target,N = 16, L = 20, similarity code P3,

and two values of TSR, TSR=10 dB (dashed curves) and TSR=30 dB (solid curves). P3 code (x-marked curves).

Code whose ambiguity function is in Figure 3b (o-marked curves). Code whose ambiguity function is in Figure 3c

(plus-marked curves). Code whose ambiguity function is in Figure 3d (asterisk-marked curves).

September 5, 2008 DRAFT



28

−12 −10 −8 −6 −4 −2 0 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|α|2 dB

P
d

increasing L

P
d
benchmark

P
d
Barker code

P
d
bound,c

Figure 5: Pd of PCA-SC versus|α|2 (dashed curves) forPfa = 10−6, non-fluctuating target,N = 7, ǫ = 1.5,

similarity code Barker, and several values ofL ∈ {1, 5, 10, 1000}. P benchmark
d (dotted-marked curve).PBarker code

d

(solid curve).P bound,c
d (dash-dotted curve).
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Figure 6: Pd of FA-PCA-SC versus |α|2 (dashed curves) forPfa = 10−6, non-fluctuating tar-

get, N = 16, M = 16, L = 20, similarity code P3, and several values ofǫ ∈

{0.1951, 0.5778, 0.9383, 1.2627, 1.5386, 1.7553, 1.9047, 1.98080}. P benchmark
d (dotted-marked curve).PP3 code

d

(solid curve). Notice that, forǫ ∈
[

0,

√

2(1 − cos 2π
M

)
)

, Pd perfectly overlaps withPP3 code
d .
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Figures 7a-7d: Ambiguity function modulus of FA-PSC-SC forN = 16, L = 20, Tr = 5Tp, similarity code

P3, and several values ofǫ: (a) ǫ = 0.5778, (b) ǫ = 0.9383, (c) ǫ = 1.2627, (d) ǫ = 1.5386.
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Figure 8: Pd of FA-PCA-SC versus|α|2 (dashed curves) forPfa = 10−6, non-fluctuating target,N = 7, ǫ = 1.5,

similarity code Barker, and several values ofL ∈ {1, 5, 10}. P benchmark
d (dotted-marked curve).PBarker code

d

(solid curve).P bound,c
d (dash-dotted curve).P exhaustive

d (plus-marked curve).
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