Course Information

- Class webpage
- http://www.ece.umn.edu/users/kia/Courses/EE5323
- Instructor: Kia Bazargan
- Office: EE/CSci 4-159, Email: kia@umn.edu
- Ph: (612) 6254588
- Office hrs: MW 10-11, or by appointment
- TA: Satish Sivaswamy
- Office: VLSI Lab EEICSci 1-200, Email: satish@umn.edu
- Ph: (612) 6267163
- Lab/office hrs: TTh 11-12
- UNITE / WebVista webpage
- www.myu.umn.edu
\qquad

UNIVERSITY OF MINNESOTA

UNITE

- Class will be broadcast through the UNITE system
- Streaming video available
- www.myu.umn.edu
- Please attend class for more interaction
- To encourage your attendance, video will be available 10 days after the actual lecture (standard UNITE policy - no exceptions)

Class Material

- Textbook:
- "Digital Integrated Circuits - A Design Perspective", $2^{\text {nd }}$ ed, by J. Rabaey, A. Chandrakasan, B. Nikolic
- Writing on the board versus powerpoint
- Other references
- I. E. Sutherland, R. F. Sproull, and D. F. Harris, Logical effort : Designing fast CMOS circuits, Morgan Kaufmann, San Francisco, CA, 1999.
- Y. Taur, T. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, 2002.

CAD Software

- Cadence schematic and layout
- Industry standard
- Online tutorials
- Companies prefer to hire students with design experience in Cadence environment (making you competitive for industry jobs is a big focus of this class)
- HSPICE for circuit simulation
- Cosmoscope for viewing results
- Technology file: 140 nm
- VLSI lab: EE/CSci 1-200
- Off-campus students can use your company's tools

UNIVRSTYOEMINISSOTA

Policies

- Homework must be received before class
- 3 days of grace period to be used for all assignments (e.g., 1 day each for 3 assignments, or 3 days on one assignment)
- After the grace period is used up, late submission results in a zero grade
- Zero tolerance for cheating
- Collaboration OK, copying NOT OK
- No extra work for extra credit
- Check class web pages regularly. Students are responsible for checking their email, the discussion threads and the announcements section on class web page regularly

Academic Integrity

- Students caught engaging in an academically dishonest practice will receive a failing grade for the course.
- University policy on academic dishonesty will be followed strictly.
-http://wwww1.umn.edu/oscai/

Grading Policy

- 20\% Homework and quizzes
- 20\% final project
- Two phases
- Requires a lot of time
- 25\% Midterm - open notes, open book.
- 35\% Final exam - open notes, open book

University or minnesota

Action Required

- Subscribe to the class email list
- Instructions on class website
- Read the definition of academic integrity at: http://wwww1.umn.eduloscail

Plus a wide variety of 8000 level courses

UNIVERITY OFMINISSOTA

Course Overview

- This class is intended to be an introduction to the design of very large scale integrated (VLSI) circuits. It is the first part of a two-semester sequence: this part focuses on the transistor-level and logic-level aspects, while the second part, EE 5324, concentrates on designing circuits that implement various functionalities (e.g. memories, datapath units).
- The main objective of the two-semester sequence is to provide the student with the capability of designing digital VLSI circuits.

The First Computer

The Babbage
Difference Engine
(1832)

25,000 parts
cost: $£ 17,470$

UnIVERSITY OF MINNESOT

- 45nm is getting ready for production, 32nm is in research phase
- New technology generation introduced every 2-3 years

INV ERSTY OFM MNTEOT

Cost per Transistor

- You can buy 10M transistors for a buck
- They even throw in the interconnect and package for free

Transistors Shipped Per Year

- Today, there are about 100 transistors for every ant - Gordon Moore, ISSCC ‘04

Transistors per Chip

- 1.7B transistors in Montecito (next generation Itanium) - Most of the devices used for on-die cache memory

UNIVERSITY OF MINNESOTA
 Moore's Wrong Prediction

- ~15\% larger die every new generation
- This means more than 2 X increase in transistors per chip

- Supply voltage is decreased for power reduction

$$
P_{\text {active }} \propto C V_{d d}^{2} f
$$

UNIVERSITY OF MINNESOT
 4 Decades of Transistor Scaling: Itanium 2 Processor

- 130nm process
- 410M transistors
- $374 \mathrm{~mm}^{2}$ die size
- 6MB on-die L3 cache
- 1.5 GHz at 1.3 V
- $6.4 \mathrm{~GB} / \mathrm{s} 400 \mathrm{MT} / \mathrm{s} 4$-way bus interface
- System compatible with existing Itanium 2 platforms
- Extensive RAS, DFT and DFM features

UNIVERSITY OF MINNESOTA

- Lead microprocessors power continues to increase

- Transistors are becoming dimmers
- High-end microprocessors: Packaging, cooling
- Mobile/handheld applications: Short battery life

UNIVERITY OEMINISSOTA

Leakage Power Crawling Up in Itanium 2

- Same thermal design envelope as the 180 nm Itanium ${ }^{\odot} 2$ processor
-50% frequency increas
- 2X larger L3 cache
- Leakage increased 3.5 X

tanium² 2 Processor 3M (180 nm)
- Transistor leakage is perhaps the biggest problem

- Intrinsic parameter variation (static)
- Channel length, random dopant fluctuation
- Environmental variation (dynamic)
- Temperature, supply variations

[^0]
[^0]: UNIVERSITY OF MINNESOTA

 ## Summary

 Digital IC Business is Unique

 - Things Get Better Every Few Years
 - Companies Have to Stay on Moore's Law Curve to Survive
 - Benefits of Transistor Scaling
 - Higher Frequencies of Operation
 - Massive Functional Units, Increasing On-Die Memory
 - Cost/MIPS Going Down
 - Downside of Transistor Scaling
 - Power (Dynamic and Static)
 - Process Variation
 - Design/Manufacturing Cost
 -

