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ABSTRACT
The theory of compressed sensing shows that sparse signals
in high-dimensional spaces can be recovered from a relatively
small number of samples in the form of random projections.
However, in severely resource-constrained settings even CS
techniques may fail, and thus, a less aggressive goal of par-
tial signal recovery is reasonable. This paper describes a
simple data-adaptive procedure that efficiently utilizes in-
formation from previous observations to focus subsequent
measurements into subspaces that are increasingly likely to
contain true signal components. The procedure is analyzed
in a simple setting, and more generally, shown experimen-
tally to be more effective than methods based on traditional
(non-adaptive) random projections for partial signal recovery.

Index Terms— sparsity, compressed sensing, signal de-
tection and estimation, adaptive sampling

1. INTRODUCTION

The theory of compressed sensing (CS) has had a profound
effect on our understanding of signal acquisition and sam-
pling, and is currently at the forefront of signal processing re-
search. Consider a signal (vector) that has a sparse represen-
tation (i.e., can be written as a linear combination of a small
number of basis vectors). The basic idea of compressed sens-
ing is that if one takes non-adaptive samples (samples that do
not depend on the actual signal being observed) in the form of
projections of the signal onto a set of test vectors, and if the
test vectors are incoherent with the basis vectors comprising
the basis in which the signal is sparse, then the signal rep-
resentation can be recovered exactly from a relatively small
number of such samples, roughly proportional to the number
of components in the sparse representation [1, 2]. In addition,
compressed sensing remains stable in the presence of random
noise; i.e., the recovery degrades gracefully, but markedly, as
the noise level is increased [3, 4].

Despite its recent popularity and notable success in noise-
less settings, traditional CS methods do suffer several draw-
backs. First, in noisy settings, using incoherent projections
leads to an inherent reduction in measurement signal-to-noise
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ratio (SNR) relative to what could be attained using directly
focused samples (such as traditional point samples). Incoher-
ence essentially ensures that each projection observation pro-
vides some information about the unknown signal, and this
is accomplished by allocating an equal fraction of “sensing
power” to every dimension of the signal space. While this
approach is sensible in noise-free settings, the spreading of
sensing power necessarily results in a reduction in the SNR
per dimension in noisy settings.

A second, more subtle, limitation of CS arises in set-
tings where the acquisition process is severely resource-
constrained. Despite the tremendous reduction in the number
of observations required for provable success of CS meth-
ods, there are some application domains in which even the
CS requirements are too restrictive. For example, in settings
where the signal of interest is time-varying, there may not be
sufficient time to collect a enough CS observations to obtain
a useful estimate of the entire signal. Another scenario where
this restriction could be evident is in rapid-detection settings,
where the goal is to identify a subset of the true signal support
using as few observations as possible.

In this paper we explore a method that addresses both of
these limitations simultaneously through the use of adaptivity
in sampling (making subsequent observations using knowl-
edge of the specific signal of interest gleaned from prior ob-
servations). In general, it is easy to envision a sampling proce-
dure that begins with incoherent sampling, and utilizes some
feedback information from each observation to focus subse-
quent observations more directly into the signal subspace. In-
deed, as more information is obtained from the observations,
subsequent samples could be focused more directly onto the
relevant signal components, providing a significant improve-
ment in measurement SNR. In addition, if the feedback pro-
cess quickly focuses in on the actual signal support, only a
few observations need be collected.

The potential advantages of adaptive projection shaping
schemes for sparse signal recovery were examined in several
recent works. The first published approach was the fully-
Bayesian procedure proposed in [5] (and later extended in
[6]). While shown to be effective in practice, the computa-
tional complexity of these projection shaping procedures limit
their application to problems of relatively small dimension. A
more computationally efficient Bayesian algorithm was pro-



posed in [7]. Absent from these prior works was any theoret-
ical evaluation of the performance of the algorithms, which
is prohibitive due to the complicated statistical dependencies
among observations.

Here we propose a simple adaptive projection shaping
procedure that is amenable to direct analysis in simple set-
tings, and which leverages favorable implementation features
of each of the previously proposed adaptive methods. Like
the adaptive procedure described in [6], the method proposed
here does not require explicit knowledge of the observation
noise power (though the performance will, of course, depend
on it). In addition, as with the procedure in [7], the proposed
procedure enjoys the benefit of lower implementation com-
plexity than the methods of [5, 6].

The remainder of the paper is organized as follows. Fol-
lowing a brief formalization of the observation model in Sec-
tion 2, we propose our adaptive procedure in Section 3, and
we provide a theoretical analysis of its performance in a sim-
ple setting. Section 4 provides a more comprehensive (exper-
imental) validation of the proposed procedure, demonstrating
its improvement relative to methods that utilize non-adaptive
random projections, for the task of partial signal support re-
covery. Conclusions are discussed in Section 5.

2. OBSERVATION MODEL

Let x ∈ Rn denote the unknown signal of interest, which will
be our object of interest throughout the paper. We assume the
signal x is sparse, meaning that most of its entries are zero.
Observations of the signal are modeled as noisy projections
onto a set of user-specified test vectors. Formally, the obser-
vations are given by

yi = aT
i x + ηi, i = 1, . . . , k (1)

where {ai}k
i=1 are the test vectors, and ηi are independent

and identically distributed (i.i.d.) normal random variables
with zero mean and variance σ2. In addition, we assume that
each test vector satisfies ‖ai‖22 =

∑n
j=1 a2

i (j) = 1, essen-
tially limiting the amount of “sensing energy” available for
each projection observation. At times, we will find it useful
to express the observation model in matrix form

y = Ax + η, (2)

where y is k× 1, A is a k×n matrix whose rows are the test
vectors {ai}k

i=1, and η is the k × 1 vector whose entries are
the noises {ηi}k

i=1.
Traditional CS methods utilize non-adaptive collections

of test vectors {ai}k
i=1 whose entries are incoherent with the

basis vectors of the basis in which the signal is sparse. Early
works in CS established that incoherence is not difficult to at-
tain in practice—many random vectors, such as vectors whose
entries are independent and identically distributed (iid) Gaus-
sian or symmetric Bernoulli random variables are, with high

probability, incoherent with any fixed orthonormal basis [2,
8, 9, 10]. In contrast, the sequential procedure proposed here
provides more flexibility, and allows the test vectors to be cho-
sen adaptively based on prior test vectors and observations. In
other words, we allow ai to depend on {aj , yj}j<i.

3. SEQUENTIAL PROJECTION FOCUSING

Our proposed algorithm is a simple iterative refocusing
scheme. The observations at each step of a given iteration are
reminiscent of traditional CS observations, but focused only
on a subset of indices of the original signal. A simple testing
procedure reduces the size of the subset of interest at each
step, allowing sensing energy to be more directly focused in
subsequent steps. A pseudocode description of the algorithm
appears as Algorithm 1.

Algorithm 1: Sequential Projection Focusing.

Input:
Polarity ρ ∈ {−1,+1};
Block size b ∈ N;

Initialize:
Index set I(1) ←− {1, 2, . . . , n};

for ` = 1 to dlog2 ne do
Generate b× n sign matrix Υ;
A(`)(i, j) =



√
1

|I(`)|Υ(i, j) i = 1, . . . , b, j ∈ I(`)

0, i = 1, . . . , b, j ∈ (
I(`)

)c





;

y(`) = A(`)x + η(`);

x̂(`) =
(
A(`)

)T

y(`);

I(new) ←− {j : ρ · x̂(`)(j) > 0};

if |I(new)| > 0 then
I(`+1) ←− I(new);

else
I(`+1) ←− I(`);

end

end

Output:
Support estimate Î = maxj ρ · x̂(dlog2 ne)(j)

In words, the algorithm proceeds as follows. Begin by
specifying the polarity ρ ∈ {−1,+1} of the signal com-



ponents to search for (ρ = −1 implies searching for nega-
tive signal entries, and ρ = +1 implies searching for posi-
tive entries), and an integer b ∈ N (the block size) which is
the number of observations to collect for each step. In the
first step, obtain a collection of b observations, each of which
corresponds to projecting the unknown signal onto a vector
whose amplitude is 1/n in each of the n signal dimensions
and whose sign is given by the entries of the sign matrix Υ
generated for that step.

Next, compute the back-projection x̂(1) ∈ Rn, which is a
vector whose entries quantify the correlation between the cur-
rent observation vector y(1) and the corresponding column of
the current observation matrix A(1) (strong positive correla-
tions suggest a positive signal entry at that vector index, and
likewise a strong negative correlation suggests a negative en-
try). Refine the set of indices of interest by retaining only
the indices of x̂(1) having correlations that are sign-consistent
with the specified polarity.

In the following step, collect another b observations, but
this time, only observe the dimensions corresponding to the
indices of interest from the previous step. Eliminating some
of the indices allows for an increase in the amount of en-
ergy that can be allotted to the remaining indices of inter-
est. This is quantified by the scaling of the nonzero entries
of A(`)—as the size of the set of indices of interest decreases,
the sensing energy per index of interest increases. Continue
in this fashion until the size of the set of indices of interest
reduces to one. Because the specification of the sign matrix
Υ is rather general, the ‘if’ statement is required to guarantee
that the set of indices of interest remains non-empty. Finally,
the output of the procedure is the index of the strongest sign-
consistent correlation present in the final back projection vec-
tor x̂(dlog2 ne). In the case where the maximum is not unique,
the tie can be broken deterministically.

At a high level, note that the procedure essentially
amounts to applying a naı̈ve reconstruction approach to the
collection of observations at each step, then using that coarse
signal estimate to direct subsequent measurements. The key
feature is that rather than attempt a full reconstruction at each
step (by retaining a small set of indices that are most likely
to correspond to signal components), the simple threshold-
ing test instead rejects a relatively large subset of indices at
which signal components are least likely to be present. In
other words, rather than requiring the entries of the back
projection at indices where signal components are present to
exhibit the strongest correlations, we only require that they
are not among the weakest. Thus, each refinement is rela-
tively forgiving, and the true components can be more easily
identified in subsequent steps because of the increasing SNR
per dimension.

Notice that the procedure as stated returns a single index
corresponding to a likely location of a nonzero signal com-
ponent. To recover multiple entries of the signal, the pro-
cedure could be performed multiple times (perhaps with dif-

fering values of ρ, to identify signal components with both
positive and negative signs). If, after each run, the previously
identified indices are removed from consideration, this multi-
step procedure corresponds to a greedy method of identifying
several likely indices corresponding to nonzero signal entries.

3.1. Complexity Analysis

The complexity of the proposed procedure is governed by the
complexity of the matrix creation and matrix-vector multi-
plications at each step, both of which are O(bn) operations.
As a result, one implementation of the proposed procedure
in this setting requires O(bn log n) operations, and the multi-
step process requires O(mbn log n) operations to identify m
components. Since the total number of observations is k =
mb log n, the general complexity of the proposed approach is
O(kn).

For comparison, we note that the adaptive procedure pro-
posed in [6] requires O(n3) operations, while a “fast version”
of the same algorithm requires O(k2n) operations. On the
other hand, the adaptive procedure proposed in [7] requires n
simple parameter updates following each observation, result-
ing in an overall complexity of O(kn) operations. Thus, like
the procedure proposed in [7], the procedure described here
enjoys the benefits of low computational complexity, making
it a viable option in high-dimensional settings.

3.2. Performance Analysis

Our adaptive procedure is amenable to direct analysis in a
simple setting. Consider a signal x ∈ Rn consisting of a
single nonzero entry of amplitude 1, assume that the signal
dimension n is a power of 2, and let b = 1. In this case, the
sign matrix can be chosen so that the set of indices of interest
is exactly bisected at each step. For example, this could be
accomplished by choosing the signs of the nonzero entries of
the test vector at each step to be the entries of any vector with
half of the entries equal to +1 and half equal to −1. For this
simplified procedure, we have the following result.

Theorem 1. When the adaptive procedure (using the
specially-chosen sign pattern described above) is applied to a
sparse signal x ∈ Rn (where n is a power of 2) having a sin-
gle nonzero entry of amplitude 1, then the index returned cor-
responds to the true location of the nonzero entry with proba-
bility

P a =
log2 n∏

`=1

Φ

(√
2`−1

σ
√

n

)
, (3)

where Φ(z) is the standard normal CDF.

Proof. To establish the claim, we let j∗ denote the location
of the single nonzero entry of x. Model each iteration of the
procedure as a Bernoulli test with success probability P`. Be-
cause the noise is independent for each observation, the prob-



ability of identifying the true index after log2 n steps is sim-
ply given by the product of the probabilities of successfully
retaining the location of the nonzero entry at each refinement
step, conditioned on the event that the true location is still in
the set of indices of interest at that step.

Given successful refinements at steps 1, 2, . . . , ` − 1, at
step ` the observation is distributed as y(`) ∼ N (

a(`)(j∗), σ2
)
,

where |a(`)| = 2`−1/n. Regardless the actual sign of
a(`)(j∗), the probability that the observation is sign-consistent
with the entry of the projection vector at index j∗ is equiva-
lent to the probability that y(`) exceeds zero, which is given
by

Pr (Refine correctly at step `) = P`(n, σ)

=
∫ √

2`−1/n

−∞

1√
2πσ2

exp
(−z2

2σ2

)
dz

= Φ

(√
2`−1

σ
√

n

)
.

Overall, we have that the probability of finding the spike in
one iteration of the procedure is

P a =
log2 n∏

`=1

P`(n, σ) =
log2 n∏

`=1

Φ

(√
2`−1

σ
√

n

)
.

¤

The same technique can be applied using passive obser-
vations, where the set of indices of interest is refined as above
but the observation energy is not focused. Applying the same
reasoning as above, it is easy to see that the probability of
success in this case is given by

P p =
log2 n∏

`=1

Φ
(

1
σ
√

n

)
.

Notice that the relative benefit of focusing observation energy
is evident in the numerator of the argument in the Φ func-
tion, and it is clear that the success probability for the adap-
tive procedure is always greater than the success of the same
procedure using passive observations.

This simple result can be extended to a slightly more gen-
eral setting (b > 1) simply by repeating the bisecting mea-
surement for each observation in the block. The net effect is
a reduction in the noise variance. We give the result here as a
corollary.

Corollary 1. If for each block of observations, the bisect-
ing sign pattern observations (described above) are repeated
for each of b ≥ 1 measurements, the proposed adaptive pro-
cedure correctly identifies the location of the single positive
nonzero entry with probability

P a(b) =
log2 n∏

`=1

Φ

(√
2`−1b

σ
√

n

)
, (4)

where again, Φ(z) is the standard normal CDF.

Proof. The analysis is similar to the proof of Theorem 1, but
now, the noise level is reduced by a factor of b because of the
averaging of identical measurements. The result follows. ¤

The presence of additional nonzero components compli-
cates the relatively simple theoretical analysis presented in
the proof of Theorem 1. To compare the performance of the
proposed procedure to traditional CS approaches for partial
support recovery in these more general settings, we provide a
detailed experimental evaluation in the next section.

4. EXPERIMENTAL EVALUATION

To illustrate the effectiveness of the proposed adaptive proce-
dure relative to traditional CS methods, we compare the per-
formance of each in a variety of settings corresponding to a
range of algorithm parameters, noise levels, and signal types.
In the following simulations, we use a randomly generated Υ
for the adaptive procedure, in which each entry of the sign
matrix is independently ±1 with probability 1/2.

4.1. Varying Block Size

We begin by considering the effect of varying the block size
b. Our test signals x ∈ Rn (n = 210) are constructed to have
15 nonzero (positive) entries of equal amplitude (at randomly
selected locations), and we normalize so that ‖x‖22 = 1. For
several fixed values of SNR (S = 1/nσ2), we compare the
proposed procedure with one step of Orthogonal Matching
Pursuit (OMP) [11] applied to a collection of b log2 n tra-
ditional CS measurements using test vectors whose entries
are (appropriately scaled) random symmetric Bernoulli ran-
dom variables. Recall that the index selection step of OMP
identifies the index j at which the absolute value of the back-
projection x̂ = AT x is maximized.

The empirical probabilities of successfully identifying
one of the true support entries (averaged over 200 trials) for
four different values of S (S = 0.01, S = 0.1, S = 0.5,
and S = 1) are shown in Figure 1. Notice that, while OMP
(dotted line) performs better than random guessing (which
succeeds with probability 1/210), the proposed active proce-
dure (solid line) consistently and significantly outperforms
OMP across the entire range of block sizes examined.

4.2. Varying Noise Level

Next we consider the effect of varying noise level. As above,
the test signals x ∈ Rn (n = 210) are constructed with 15
nonzero (positive) entries of equal amplitude (at randomly se-
lected locations), and we normalize so that ‖x‖22 = 1. For
several fixed values of block size b, we compare the proposed
procedure with one step of (OMP) applied to a collection of
b log2 n traditional CS measurements.
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Fig. 1. Empirical probabilities of successfully identifying one
entry of the signal support for the proposed adaptive pro-
cedure (solid line) and OMP (dotted line), as a function of
the block size b. Each panel corresponds to a fixed SNR
(S = 0.01, S = 0.1, S = 0.5, and S = 1 in panels (a)-(d),
respectively).

The empirical probabilities of success as a function of S
for each method, again averaged over 200 trials, are shown in
Figure 2 for four different values of b (b = 1, b = 2, b = 5,
and b = 10). Again, the proposed procedure consistently
outperforms the traditional CS method, and as expected, in-
creasing the block size makes the procedure more effective.

4.3. Varying Sparsity Level

Here we evaluate the performance of the proposed procedure
as a function of the sparsity level of the signal, for the nominal
value b = 1, for four different SNR levels. For the same
signal model as above, the empirical probabilities of success
as a function of sparsity level for each method, again averaged
over 200 trials, are shown in Figure 3(a)-(d) for S = 0.01,
S = 0.1, S = 0.5, and S = 1, respectively.

As expected the performance improves with increasing
SNR, and the adaptive procedure generally outperforms the
nonadaptive method for any sparsity level. However, when
the signal becomes very non-sparse, the problem of finding
one entry of the signal becomes relatively easy and both meth-
ods perform well in this case.

4.4. Signals with Positive and Negative Entries

As a final test, we apply the proposed procedure to recover en-
tries of a signal having positive and negative entries, and for
which the nonzero entries may differ in amplitude. For each

0 0.5 1
0

0.2

0.4

0.6

0.8

1

SNR

P
r
.
 
S
u
c
c
e
s
s

(a)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

SNR

P
r
.
 
S
u
c
c
e
s
s

(b)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

SNR

P
r
.
 
S
u
c
c
e
s
s

(c)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

SNR

P
r
.
 
S
u
c
c
e
s
s

(d)

Fig. 2. Empirical probabilities of successfully identifying one
entry of the signal support for the proposed adaptive proce-
dure (solid line) and OMP (dotted line), as a function of the
SNR. Each panel corresponds to a fixed block size b (b = 1,
b = 2, b = 5, and b = 10 in panels (a)-(d), respectively).

of 200 trials, we execute the proposed procedure twice (once
each for ρ = ±1), identifying two potential signal support
entries. We term each trial a success if at least one of the sig-
nal entries identified corresponds to the location of a nonzero
signal entry. For comparison, we consider a non-adaptive ap-
proach comprising two steps of the OMP recovery procedure
(for the same number of observations as two executions of the
adaptive procedure, 2b log2 n).

As above, the signals of interest x ∈ Rn (n = 210) have
15 nonzero entries and satisfy ‖x‖22 = 1, but the sign of each
entry is selected randomly and the amplitudes exhibit a poly-
nomial decay (the amplitudes of the nonzero entries are pro-
portional to p−1/2, for p = 1, 2, . . . , 15). We consider varying
block sizes b, and compare the performance of each method
for four different values of SNR. The results are shown in Fig-
ure 4. It is clear that the adaptive procedure still outperforms
OMP, and remains an effective approach for partial support
recovery in this more general setting.

5. CONCLUSIONS

We have demonstrated that the adaptive procedure proposed
in this paper is consistently more effective than traditional CS
methods for partial support recovery, making it a more viable
option than CS in severely resource-constrained applications.
We also note that the simplicity of the feedback adaptivity
in the proposed procedure alleviates the difficulty that often
accompanies the analysis of adaptive procedures—the pres-
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Fig. 3. Empirical probabilities of successfully identifying one
entry of the signal support for the proposed adaptive pro-
cedure (solid line) and OMP (dotted line), as a function of
the sparsity level. Each panel corresponds to a fixed SNR
(S = 0.01, S = 0.1, S = 0.5, and S = 1 in panels (a)-(d),
respectively).

ence of complicated statistical dependence among observa-
tions. This makes our algorithm amenable to direct analysis
in simple settings, and possibly sheds new light on the poten-
tial for very simple adaptive sampling algorithms to provide
significant provable performance improvements.
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