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Abstract—Modern digital IC designs have a critical operating point S
or “wall of slack”, that limits voltage scaling. Even with an error- b=
tolerance mechanism, scaling voltage below a critical voltage - so-called & %
overscaling - results in more timing errors than can be effectively = 2]
detected or corrected. This limits the effectiveness of voltage scaling @ 8
in trading off system reliability and power. We propose a design- g 5
level approach to trading off reliability and voltage (power) in, e.g., L =
microprocessor designs. We increase the range of voltage values at a o &
which the (timing) error rate is acceptable; we achieve this through V. WV >V V. W v v
techniques for power-aware slack redistributionthat shift the timing a Yo Ve (lower voltage) a b Ve
slack of frequently-exercised, near-critical timing paths in a power- and @) (b)

area-efficient manner. The resulting designs heuristically minimize the

voltage at which the maximum allowable error rate is encountered, thus Fig. 1. Error rate (a) and power consumption (b) versus voltage scaling in
minimizing power consumption for a prescribed maximum error rate  BTWC designs.

and allowing the design to fail more gracefully. Compared with baseline

designs, we achieve a maximum of 32.8% and an average of 12.5% power

reduction at an error rate of 2%. The area overhead of our techniques, modern digital design will have a critical operating voltageabove

as evaluated through physical implementation (synthesis, placement and which zero timing errors occur, and below which massive timing
routing), is no more than 2.7%. errors occur. The COP hypothesis is natural in light of how modern
designs are optimized for power and area, subject to a frequency
constraint: negative timing slack (on a combinational path) is cured
by upsizing and buffering, while positive timing slack is traded off

The traditional goal of IC design is for the product to alwaysor area and power reductions. Thus, in the final design, many timing
operate correctly, even under worst-case combinations of (pfsaths are critical, and there is a “wall of (critical) slack’. The COP
cess, voltage, temperature, wear-out, etc.) non-idealities. It is weilypothesis states that overscaling beyond the critical voltage can
recognized that designing for worst-case operating conditions incefisruptly cause error rates beyond what an error-tolerance mechanism
considerable area, power and performance overheads [5], and that handle. According to [19], this has been confirmed in general-
these overheads worsen with increased manufacturing or runtimi@pose microprocessors. A key motivation for our work is that COP
variations in advanced technology nodes [B#tter-than-worst-case behavior limits the applicability of voltage scaling in trading off
(BTWC) design [1] allows reliability (in the sense of timing andreliability for power - even in the context of BTWC design.
hence functional correctness) to be traded off against performanc®ur work seeks to improve the effectiveness of BTWC design
and power. The central idea, as exemplified by the shadow-lateithniques througpower-aware slack redistributiora novel design
technique inRazor [5], is to design for average-case conditionsipproach that enables extended voltage-reliability tradeoffs. Power-
(thus saving area and power) while adding an error detection aaare slack redistribution reapportions timing slack of frequently oc-
correction mechanism to handle errors that occur with worst-caggrring, near-critical timing paths to increase the level of overscaling
variabilities. System-level techniques, as exemplifiedAtorithmic  (j.e., reduce the minimum voltage) at which a given error-tolerance
Noise Tolerance[13], allow timing errors to proliferate into the mechanism can maintain an acceptable timing error rate. The result
system or application, but then exploit algorithmic and/or cognitiié a design that fails more gracefully, and achieves significantly
noise tolerance in mitigating errors at the application level. The ugiproved power savings with only small degradation of application
of such application- or system-level error detection and correctionggrformance.
assumed in proposed probabilistic SOCs [3] and stochastic processah the following, Section Il reviews previous work, and Section Il
architectures [18], which are recent classes of BTWC designs. formalizes the problem of achieving “gradual slope” in the timing

Our work focuses on theptimizedapplication of voltage over- slack distribution, and hence graceful degradation of correctness with
scaling for power reduction in the context of BTWC design. Figvoltage overscaling. Section IV describes our power-aware slack re-
ure 1 illustrates power consumption under voltage scaling in BTWstribution techniques, and Section V discusses implementation and
designs. In the left plot, functional errors begin to occur below thexperimental methodology. Section VI presents results and analysis,
voltagevy, but we can reduce power consumption until we reach thgd Section VII concludes.
voltage V¢, given the use of error correction. The right plot shows
that below the voltage., power consumption is increased because T
of recovery overhead. .

The impact of BTWC design techniques is often limited in high?: BTWC Designs
performance digital designs by @itical operating pointor “wall Better-than-worst-case (BTWC) design approaches allow circuits
of slack” phenomenon that limits voltage overscaling and, mote save power by optimizing for normal operating conditions rather
importantly, is a direct consequence of today’s standard approachthan worst-case conditions. One class of BTWC techniques allows
power optimization. The Critical Operating Point (COP) hypothesidaptation to runtime conditions by specifying multiple safe voltage
[19] (cf. Figure 1(a)), in the context of voltage scaling, states thatamd frequency levels at which a design may operate, and allows for

I. INTRODUCTION

. RELATED WORK



switching between these states. Examples in this class are Correlatimgslack distribution of a circuit to have a gradual slope rather than
VCO [2], [12] and Design-Time DV323]. Another class of BTWC the steep slope that characterizes the critical wall (observe the blue
designs uses “canary” circuits, including delay-line speed detectatgve in Figure 2).

[4] and triple-latch monitors [16], to detect when critical timing
(failure) is imminent and thus avoid any unsafe voltage scaling.
Finally, Razor[5] and ANT techniques [13] provide error tolerance
at the circuit- and algorithm-level, respectively. Their benefits under

A ‘wall” of slack
‘gradual slope’ slack

z E
. .. . k= Frequently ]
voltage scaling are limited not only by COP behavior but by the & | exercised/q i
overhead of error correction that is increasingly required as voltage 3 paths
. - ()
is scaled. 8 :
g : Rarely
. L. ) Z. v exercised
B. Design-level Optimizations ie pabs =
Design-level optimizations for timing speculation architectures : ) L
Zero slack at  y&— Zero slack after voltage Tlmlng slack

([8], [20], [7]) identify and optimize frequently-exercised timing nominal voltage scaling

paths, while other (infrequently-exercised) paths are allowed to have

timing errors.EVAL [20] trades error rate for processor frequencyig. 2. The goal of the ‘gradual slope’ slack optimization is to transform a
by using system-level configurations to shift or otherwise reshap@Ck distrib_ution having a critical ‘wall’ into one with a more gradual failure
path delay distributions of various functional uni®lueShift[g] —characteristic.

is an application of EVAL that identifies most frequently violated . . o . .
PP d y To achieve the desired slack distribution that permits aggressive

timing constraints and optimizes the corresponding timing paths usin i | he slack of h break
forward body biasing and path constraint tuning (PCT) (essential!ﬁtage scaling, we must alter t.e.sa.c of some pat s.to rea
own the critical wall. In our optimization approach, we increase

setup timing over-constraintsCRISTA[7] also addresses variation- .
P g . 7] the slack of frequently executed critical paths to reduce the onset of

tolerant circuit design by usin8hannon expansion-baspdrtitionin : S
gn by using P P g rors when voltage is scaled. Likewise, we can reduce the slack of

to isolate critical paths. Critical paths with low activity are separate%f . . . o
and de-optimized. rarely exercised paths, since these paths will not have a significant

impact on error rate when voltage is scaled. Together, these path

. slack adjustments will reshape the slack distribution of a circuit and

C. Cell Sizing extend the range of voltage scaling. The goals of our optimization
Many previous works use cell sizing for power or area recoveste expressed in Figure 2.

subject to timing constraints. Generally, positive (setup) timing slack

on non-timing critical cell instances can be flexibly ‘traded’ for power IV. SLACK REDISTRIBUTION AND POWER REDUCTION

and area objectives (gate-length increase @t Swvap to reduce . .

leakage, or gate-width decrease to reduce area and total power], € now present our cell swapping gp_proach to a_chleve_a gradual,

Fishburn and Dunlop propose a fast iterative method to meet defif 'V'ty'. (af‘d hence power-) aware timing slack distribution for a

constraints called TILOS [6]. TILOS uses the Elmore delay mod@fven circuit design.

for transistor delays, and proposes a heuristic that sizes transistors

iteratively, according to the sensitivity of the critical path delay té. Power-aware Slack Redistribution Using Cell Swap Method

the transistor sizes, i.e., finding a greedy (maximum delay reductiongyr sjack distribution optimizer is implemented in C++ and per-

I transistor width increase) “move” at each iteration. The methqgyms cell swapping (gate sizing only, with no logic resynthesis) using

of Duet[21] performs simultaneous assignment of threshold voltagge Synopsys PrimeTime vB-2008.12-$27 tool and its built-inTcl

(Vtn) and transistor width using a merit (sensitivity) function. GUptgqcket interface. Traditional optimization tools treat all paths equally:

etal. propose small biases of transistor gate length to further minimige egative-slack paths must be brought up to zero or positive slack.

leakage power [10]. They also present a sensitivity-based downsizigig contrast, to improve the performance-power profile of the design,

approach for transistor-levely assignment [9], and a post-layout,ye spend our optimization efforts on frequently-exercised paths in

post-signoff gate length biasing technique for parametric yield (Ieakrger to minimize error rates under voltage overscaling.

age and leakage variability) optimization [11]. Jeong et al. revisit a oyr heuristic determines a target voltage corresponding to a

general linear programming (LP) formulation that can concurrentipecific error rate, and then ‘over-optimizes’ frequently-exercised

exploit multiple knobs ranging from multiyate footprint-compatible - paths using upsizing (i.e., increase of transistor width and hence drive

libraries to post-layoutgate biasing [14]. . strength) cell swaps. Figure 3 illustrates the challenges inherent in
_Our work, detailed below, uses post-layout cell resizing {0 Ietting the target voltage. The figure shows path delay changes after

distribute timing slack so as to achieve a switching activity-awat§ack optimization for a fixed target voltage, where the optimizer

‘grad.ual slope’ distribu'Fipn of f[iming slack. We believe that ours i%waps cells inPaths A B and C to reduce the slack of those paths

the first to do so specifically in the BTWC context; moreover, OYgith respect to the fixed target voltage. However, if the voltage at

proposed methodology can find frequently exercised paths rapidipich the maximum acceptable error rate is observed is larger than

(without repeated gate-level simulation asBhueShify. the target voltage as specified by the red-dotted IPaths Aand
C are optimized unnecessarily beyond the actual scaled voltage, and
[1l. THE GOAL OF DESIGN OPTIMIZATION power is wasted.

We minimize power consumption for a given error rate by min- Our slack optimization approach finds a target voltage after esti-
imizing the voltage at which that error rate can still be observethating error rates at each operating voltage, and iteratively optimizes
Traditional designs exhibit a critical wall of slack in which the patipaths while scaling voltage. At the initially selected voltage, the opti-
slacks for the majority of paths are similar and close to the criticatizer performs cell swaps to improve timing slack. After performing
path slack of the circuit (observe the red curve in Figure 2). this timing optimization at the initially selected voltage, the voltage

For traditional designs, our goal of aggressively reducing the scaled until the target error rate is reached. Figure 4 illustrates the
operating voltage to save power is thwarted by the critical wall afptimization heuristicPath Ais optimized until the target voltage is
slack, because scaling past the wall results in a catastrophic numiserched, buPath Cis not optimized, sincédath C does not have
of timing violations. To alleviate this restraint, we seek to reshapegative slack at the target voltage.



Negative Slack of Path A . o .
2 hetarget volage A o - since we do not allow the optimizer to touch a previously-

P : swapped cell; the intuition here is that this helps avoid 'cycling’
. ] PanA d> e ) 1 of configurations and also reduces runtime. After cell swapping, the
P ] PathB ‘ I optimizer checks the timing of fan-in and fan-out cells that have
: 1 ranc i ——— 1 been previously touched. When there is no timing degradation in the
: ' i i connected neighboring cells, the cell change is finally accepted.

Nominal Target voltage Unnecessary cell Target voltage

voltage (fixed) sizing (fixed)

Fig. 3. Path delay before and after slack optimization with a fixed targédgorithm 1 Pseudocode for thslack optimizer
voltage.

Procedure SlackOptimizer( )
1. Read netlist and initialize PrimeTime Tcl socket interface;

Negative Slack of Path A Find target voltage and PR - .
at the target voltage optimize iteratively 2. Read swnch|'ng activity (toggle rate) of each cell;
,,,,,,,, > 3. /IScale and find target voltage

4 ] Path A ‘ ] 4. for Viarget = 1.00V t0 0.50V:Viarget < Vearger—0.01V do
i I ) Path B E(> : ; ) Load Library (.lib) for the target voltag®arget;
— T — ER« ComputeErrorRat®arget);

i if ER> ERarget then
Nominal  Target voltage with the P — FindCriticalPathg);
voltage estimated error rate

OptimizePath&P);

New target voltage

©EONOO

Fig. 4. Target voltage and path slack before and after slack optimizatiér%' EIssontinue
using the heuristic. 12' end if

13.  //Terminate algorithm after checking error rate and power

To enable proper voltage selection, we must accurately forecddt ER<— ComputeErrorRat®arger);
error rates without resorting to time-consuming functional simulatiog2: ~PWR< ReportTotalPoweMargel);
Accurate error rate estimation ensures that we do not over-optimize; | vV R> PWRyes then

. X o p i?’ RestoreSwap$, break;

resulting in too much area overhead, or under-optimize, thus limiting.  eise ifER> ERayge then
the possible extent of voltage scaling. For this purpose, we use toggde break;
information of flip-flops that have negative timing slack. The togglé0. else
information consists of toggles from both negative-slack paths aR# PWRyrey — PWR continue;
positive-slack paths; in the error rate calculation, only toggles fro%' en;?gr'f
negative-slack paths are considered. Hence, the error rate in a singlesaye jist of swaps and perform ECO with SOCE;

flip-flop, ERs¢, can be estimated by Equation (1).
Procedure OptimizePaths(P)

ZT Gp_neg 1. while P # 0 do
ERff = TGys x ETT (1) 2. Pick the critical pathp with maximum switching activity;
p_all 3. P—P—p;
In Equation (1),TG¢¢ is the toggle rate of flip-flopf f, TGy neg 4.  while swap count is not zercdo
- 5. for i=0to|p| do

and TGy g are the toggle rates of a negative slack pathegand

all pathsp_all to flip-flop ff. We obtain an aggregate error rate as)’ i ;';gncr%;hen

the summation of error rates in all flip-flops. However, this valug’ endif

will be significantly larger than the actual error rate observed during, for all alternative LibCell for the cell instance(i) do
functional simulation, it does not account for errors that occur in tHe®. Resize the instance(i) with LibCell;

same clock cycle. Moreover, the existence of false paths also impdrs Check the path slack of;

pessimism to the estimated error rate. We therefore use a paramgfer for all fanin and fanout celtran of c(i) do

if flagcfan then

a, opta_lned from ex_perlmental investigations, to cor_1_1pens_ate f_or tq@. Check the slack of critical pathyan of Cran:
pessimism. The estimated error rate of a target deBigndefined in 15, end if
Equation (2), with the compensation parametein the experiments 16. end for
reported below, a value af = 0.5 is used. 17. if Aslack p) <0 or Aslack pran) < O then
18. Restore cell change;
19. end if
ERp =a x ERsf (2) 20. flage;) « true;
ifep 21. end for

. . 22. end for
Figure 6 compares estimated error rates and actual error rates®t end while

each operating voltage. The estimated error behavior roughly matchesend while
the actual error behavior, and we can find an appropriate target
voltage based on the estimated error rate. . o
After finding a target voltage, thslack optimizerfinds negative- Algorithm 1 presents . pseudocode of  the optlmlzer.
slack paths by tracing backward from flip-flop cells using a depth-firS@MPUteEmorRat@arger) estimates error rates, as defined by
search (DFS) algorithm. We optimize by swapping (i.e., resizingyduation (2). ERarget is a target error rate, which can be set
cells with other library cells that have identical functionality. wd® the maximum allowable error rate. TheindCriticalPathg)
determine priority according to the switching activity of a pathiunction finds all negative-slack paths in the design, and
defined as the minimum toggle rate over all cells in the path. c&jeportTotalPoweMarger) reports the total power consumption
swapping is performed on all cells in a given target path, and onlfP™ Synopsys PrimeTimén the pseudocode, the target voltage is
swaps that improve timing slack of the path are acceptethere | eratively scaled by an additional 0.01V until the error rate exceeds

is significant order-dependence - and hence impact of prioritizatiantarget error rate. Then, the heuristic pptimizes critical paths at the
target voltage. If the power consumption is not reduced after the

e consider only setup timing slack, since hold violations can typicallyoltage scaling, the latest swaps are restored byRégtoreSwa %
be fixed by inserting hold buffers in a later step. function and the optimization is terminated.




Algorithm 2 Pseudocode for thpower reduction We use theDpenSPARC Tprocessor [25] to test our optimization
Procedure PowerReduction( ) framework. Table | describes the selected modules and provides
1. SlackOptimizer(;) characterization in terms of cell count and area.

2. Insert all cells into seC;

3. while C0 do TARGET MODU-[QELFEotIa EXPERIMENTS

4 Pick the cellc and check the cell slaci; and toggle ratél g;

5. if do>00rTg <P then [ Module | Stage | Description [ Cell# | Area un?) |

6. for all alternative LibCell for the cell instanagi) do Isu_dctl MEM L1 Dcache Control 4537 13850

7 Resize the instance(i) with LibCell; Isu_qctil MEM LDST Queue Control 2485 7964

8 Check the total powepw of the cellc; Isu_sth_ctl MEM ST Buffer Control 854 2453

9 for all fanin and fanout celttan of c(i) do sparcexu_div EX Integer Division 4809 14189

10. if Aslack(Ctan) <0 andTge,, >y then sparcexu_ecl EX Execution Unit Control Logic| 2302 7089

11. Restore cell change; sparcifu_dec FD Instruction Decode 802 1737

12. else if pwei) > pwe;-y) then sparcifu_errdp | FD Error Datapath 4184 12972

13. Rgstore cell change; sparcifu_fcl FD L1 Icache and PC Control 2431 6457

14. end if spu_ctl SPU Stream Processing Control | 3341 9853

15 end for tl_mmuctl | MEM MMU Control 1701 5113

16. end for

17.  endif

18. C—C-g¢ . ) . ) .

19. end while Gate-level simulation is performed using test vectors obtained from
20. Save list of swaps and perform ECO with SOCE; full-system RTL simulation of a benchmark suite consisting of bzip2,

equake and a sorting test program. These benchmarks are each fast-
forwarded by 1 billion instructions using the OpenSPARC T1 system
simulator, Simics [17] Niagara. After fast-forwarding in Simics, the
architectural state is transferred to tBpenSPAR@TL usingCMU

In addition to the above slack optimization, we can also redudg@ansplant[22]. More details of our architecture-level methodology
power consumption by downsizing cells on rarely-exercised pathwe available in [15].

Algorithm 2 shows this post-processing heuristic. Tin@wer re- Switching activity data gathered from gate-level simulation is
duction procedure downsizes cells logical equivalents with smalléed to Synopsys PrimeTime (PBlatic timing tool through itsTcl
power consumption. Two parameters govern cell selection and svexket interface. Timing slack and switching activity information
acceptance. First, a cell is selected that has positive slack or isigncontinually available fronPT, through the Tcl socket interface,

a rarely-exercised path. The cell’s toggle rate should be less thduring the optimization process. After our optimization, all netlist
B, where the parametds is set small enough for us to expect archanges are realized usi@@dence SoC Encounter v{29] in ECO
insignificant effect on error rate. Downsizing cell swaps are accept@hgineering change order) mode.

as long as they do not increase error rate; to this end, a second variabModule designs are implemented in TSMC 65GP technology using
y characterizes the cell’s effect on neighboring cells. If the timing standard flow of synthesis witBynopsys Design Compiler vY-
slack of the neighboring cells which have larger toggle rate fhan 2006.06-SP326] and place-and-route witBadence SoC Encounter
the downsizing is restored. Within these constraints, the optimiz&s noted above, voltage scaling effects are captured by characterizing
selects the best candidate cells to reduce power without affecti8gnopsys Libertyibraries (usingCadence SignalStorm TS6at a
error rate. number of operating voltages. Runtime is reduced by adopting a
restricted library of 63 commonly-used cells (62 combinational and
1 sequential); the total characterization time for 51 voltage points is
around two days, but this is a one-time cost.

Figure 5 illustrates our overall flow for gradual-slope slack op- Using ourslack optimizer we optimize the module implementa-
timization. The switching activity interchange formatSAIF) file tions listed in Table I, and then estimate error rates by counting cycles
provides toggling frequency for each net and cell in the gate-lewsith timing failures during gate-level simulation. We use a SCAN-
netlist; it is derived from a value change dump (VCD) file fronlike test wherein the test vectors specify the value of each primary
gate-level simulation using in-built functionality of th®ynopsys input and internal flip-flop at each cycle. This prevents pessimistic
PrimeTime-Px[27] tool. To find timing slack and power values aterror rates due to erroneous signals propagating to other registers.
the specific voltages, we prepadgnopsys Libertylib) files for each We emulate the SCAN test by connecting all register output ports to
voltage value — from 1.00V to 0.50V in 0.01V increments — usinthe primary input ports, allowing full control of module state.
Cadence SignalStorm TSI628].

B. Power-aware Post-processing

V. METHODOLOGY

VI. RESULTS AND ANALYSIS

: R Our experimental results compare the performance of our slack op-
Be““‘“”(";’,k ,ge;“ef"‘""“ Initial design “"'agf:j;;fo‘i;z)““"“ timization flow against several alternatives for 10 component modules
e (OpenSPARCTD ¢ of the OpenSPARC Tfrocessor [25]. In addition to traditional CAD
Tnput vector Design information (.v .spef) SZ’;’CPV?; flows targeting loose (O_.SGHZ) gnd tight (l.2_GHz) timi_ng constraints
v ) * L ciiv) we_al_so compare against an implementationBtdieShift [8] t_hat
et optlmlz_es paths in decre_asmg c_)rQer of the product c_)f negative slack
NC Verilog) Slack Optimizer | =--<- | PrimeTime (magnitude) and switching activity. When voltage is scaled, such
Tdf/‘;”k"’ paths cause the most timing violations, and we reduce errors by
|—T List of swaps assigning tighter timing constraints during P&R witadence SoC
Switching activity A 4 Encounter We perform gate-level simulation of modules to estimate
(csaif) ECO P&R »|  Final design error rates and power consumption at different voltages. For all
(SOCERcounter) experiments, we use a compensation factax ef0.5 (Equation (2)),

and set = y=10"% in Algorithm 2.
Fig. 5. CAD flow incorporating ouslack optimizetto create a design with  Table Il demonstrates the impact of slack optimization in reducing
gradual-slope slack distribution. power consumption for our test modules. Benefits estimated at
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Fig. 6. Actual error rates vs. estimated error rates for various modules in Table 1.

optimization time are compared to actual simulated results, showifay the diverse set of modules, in spite of its slight area overhead
the power reduction afforded for an error rate of 2%. Discrepanciéx7%).
between the actual and estimated results are primarily due to thd=igure 10 shows the slack distribution of each design tech-
inaccuracy of the error rate estimation technique. The slack optimizeéque — traditional SP&R (tightly constrained}JueShift PCT and
achieves up to 25.8% power reduction by redistributing slack asthck optimizerfor Isu_dctl. We note that power-aware slack re-
extending the range of voltage scaling. The power reduction stagjstribution results in a more gradual slack distribution. Thus, the
provides additional benefits, up to 3.6%, by downsizing cells aiack-optimized design will have fewer failing paths as voltage
infrequently exercised paths. is scaled down. Figure 11 compares the slack distribution for all
We note that not all modules achieve substantial benefits. Povmeodules before and after slack optimization. For some modules
reduction from baseline is limited faparc exu div, sparcifu_errdp (tlu_mmu.ctl,sparcifu_errdp), the slack distribution is relatively
and tlu_mmu ctl. These modules have low switching activity, andinchanged after slack optimization (again, because the error rates of
their error rates remain below 2% even for when voltage is scaldtese modules are low), and optimization is not performed unless an
down to 0.5V. Consequently, both the baseline and slack-optimizedor rate of 2% is exceeded. Faparc exu div, the slack distribution
implementations achieve the same benefits for these modules. $ggnains unchanged because the optimization heuristic is unable to
nificant benefits can be achieved when the original slack distributioeduce the delay on critical paths through cell swapping.

of the module dictates that errors increase rapidly. In that case, the
140 -

slack optimizer is able to redistribute slack and extend the range of
voltage scaling.

Figure 7 shows how error rate varies as voltage is scaled for each of
the OpenSPARC Todules. The slack optimizer redistributes timing
slack so that the error rate for a module increases more gradually as
voltage is scaled down. Aggressive optimization can in some cases
result in a lower error rate for tightly constrained P&R or BlueShift,
but our goal is ultimately not to reduce error rate but rather to reduce

# of paths
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Timing Slack (ns)

power consumption.

Figure 8 shows the power consumption of the modules at each
operating voltage, demonstrating that although aggressive optimiza-
tion can result in a lower error rate, this comes at considera su.d]rfll)
power expense due to increased area from cell upsizing. The area” ~
overhead of the slack optimizer is significantly lower than with the
other approaches, since it targets the specific cells for which upsizing VIl. SUMMARY AND CONCLUSION
produces the most benefit. The additional power reduction stage eve@ur work enables an extended power-reliability tradeoff in digital
reclaims some of this area overhead, reducing power almost to tHasigns by optimizing the slack distribution for ‘gradual-slope’ in
of the baseline at the same voltage. Table Il shows the average sretwggle rate-aware manner. Opower-aware slack redistribution
overhead of each design approach. lowers the minimum voltage with acceptable timing error rate, and
leads to designs that not only can be run with lower power, but that
also fail more gracefully. We demonstrate the impacts of ‘gradual-
slope’ design on voltage overscaling and total system power, using

-0.1 0 0.1 0.4 0.5

Slack distribution of each design technique (target module :

TABLE Il
AREA OVERHEAD OF DESIGN APPRAOCHES

Tight P&R

BlueShift

Slack Optimizer

SlackOpt+ PowerReduce

20.3%

6.5%

2.7%

2.7%

modules from theOpenSPARC Tbenchmark and 65nm SP&R
implementation. Our experiments show a maximum of 32.8% and

an average of 12.5% total power savings over the baseline design at
an error rate of 2% (cf. Table Il). The area overhead of our technique
The slack optimizer maximizes the benefits gained per eazhno more than 2.7%.
increase area cost. This efficient slack redistribution approach result©ur ongoing research seeks CAD techniques for similar extended
in lower power for a given error rate, as shown in Figure 9. Benefitsliability-power tradeoffs for embedded memories, as well as the
are chiefly due to the ability to scale voltage to a lower level for thexploitation of heterogeneity in multi-core architectures to reduce
same error rate. Even though aggressive approaches can sometawesge-case overhead of our gradual-slack optimization (with het-
increase the range of voltage scaling further than the slack optimizempgeneously reliable and gracefully-degrading cores). Additionally,
the power overhead of these approaches outweighs the power savings present techniques can be augmented to consider metrics of
of voltage scaling, and total power is even higher than that of th&rchitecture-level criticality’ in addition to path timing slack, so as
baseline in many cases. Power-aware slack redistribution, on the otteefurther reduce overhead of increased resilience and more graceful
hand, does well to reduce power consumption at the target error raggstem degradation with voltage overscaling.
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TABLE Il
EXPERIMENTAL RESULTS- POWER REDUCTION AFTER OPTIMIZATION
Estimated results (slack optimizer) Actual results (after ECO and simulation)
Design Before optimization After optimization Before optimization After slack optimizer After power reduction
Voltage Power Voltage Power | Reduction | Voltage Power \oltage Power Reduction | \oltage Power Reduction
(Y] W) (Y] W) (%) (Y] w) M W) (%) (% W) (%)
Isu_dctl 0.92 4.25E-4 0.74 2.70E-4 36.39 0.76 3.10E-4 0.66 2.41E-4 22.26 0.66 2.30E-4 25.81
Isu_gctll 1.00 2.96E-4 0.85 2.07E-4 30.24 0.86 2.36E-4 0.82 2.14E-4 9.32 0.82 2.11E-4 10.59
Isu_stb ctl 0.96 8.11E-5 0.92 7.55E-5 7.00 0.71 4.61E-5 0.66 4.04E-5 12.36 0.66 3.99E-5 13.45
sparc exu_div 0.84 3.04E-4 0.84 3.04E-4 0.00 0.5 1.06E-4 0.5 1.06E-4 0.00 0.5 1.05E-4 0.94
sparcexu_ecl 0.88 1.99E-4 0.73 1.43E-4 28.53 0.91 2.41E-4 0.74 1.63E-4 32.37 0.74 1.62E-4 32.78
sparcifu_dec 1.00 5.73E-5 0.81 3.98E-5 30.55 0.66 2.46E-5 0.63 2.38E-5 3.25 0.63 2.37E-5 3.66
sparcifu_errdp 0.56 1.22E-4 0.55 1.17E-4 3.78 0.51 1.11E-4 0.51 1.12E-4 -0.90 0.51 1.10E-4 0.90
sparcifu_fcl 0.98 2.21E-4 0.85 1.69E-4 23.34 0.85 1.77E-4 0.74 1.38E-4 22.03 0.74 1.35E-4 23.73
spu_ctl 0.69 1.43E-4 0.65 1.26E-4 11.75 0.59 1.13E-4 0.56 1.02E-4 9.73 0.56 9.99E-5 11.59
tlu_mmu_ctl 0.74 9.60E-5 0.73 9.37E-5 2.35 0.5 4.62E-5 0.5 4.62E-5 0.00 0.5 4.56E-5 1.30
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Fig. 11. Slack distribution of various modules in Table | (before and after slack optimization
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