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Abstract. We introduce a novel data fitting procedure of multicom-
partment models for diffusion MRI (dMRI) data of the brain white
matter. These biophysical models aim to characterize important mi-
crostructure quantities like axonal radius, density and orientations. In
order to describe the underlying tissue properties, a variety of models for
intra-/extra-axonal diffusion signals have been proposed. Combinations
of these analytic models are used to predict the diffusion MRI signal in
multi-compartment settings. However, parameter estimation from these
multi-compartment models is an ill-posed problem. Consequently, many
existing fitting algorithms either rely on an initial brute force grid search
to find a good start point, or have strong assumptions like single fiber ori-
entation to estimate some of these parameters from simpler models like
the diffusion tensor (DT). In both cases, there is a tradeoff between com-
putational complexity and accuracy of the estimated parameters. Here,
we describe a novel algorithm based on the separation of the Nonlinear
Least Squares (NLLS) fitting problem, via Variable Projection Method,
to search for nonlinearly and linearly entering parameters independently.
We use stochastic global search algorithms to find a global minimum,
while estimating nonlinearly entering parameters. The approach is in-
dependent of any starting point, and does not rely on estimates from
simpler models. We show that the suggested algorithm is faster than al-
gorithms involving grid search, and its greater accuracy and robustness
are demonstrated on synthetic as well as real data.

1 Introduction

Diffusion MRI can measure (water) molecules displacement in a certain time
interval within a structure. This can be used to reveal tissue micro structure
information using biophysical tissue models. Simplest of these models is Diffusion
Tensor [1], giving simple bio-markers like Mean Diffusivity (MD) and Fractional
Anisotropy (FA). However, more specific markers like axon radius, density and
volume fractions of different compartments can be estimated from sophisticated
multi compartment models, as suggested for example in [2] and [3].



The problem of fitting diffusion MRI data to these biophysical models is not
well posed due to the type of functions or models describing diffusion in a certain
geometry. These functions depend non linearly on variables to be estimated and
over-all problem in non-convex, thus having many local optima. Any optimiza-
tion algorithm using gradient based methods will largely depend upon a good
starting point to reach global optimum.

Initial grid search over physically possible range of parameters is done in
NODDI [2] and ActiveAx [3] to get a starting point for solving Gauss-Newton
(GN) nonlinear optimization problem for parameter estimation. CAMINO [4]
uses estimates from simpler models to provide initial estimates to complex multi
compartment models. Resultantly, before solving a three compartment model
using Levenberg Marquardt (LM) method, CAMINO may solve approximately
four simpler models to have an initial guess. Grid search and estimates from
simpler models, increase the possibility of reaching global optimum but add to
computational complexity and estimation time. AMICO [5] presents multi com-
partment models (as suggested in [2] and [3]) parameter estimation as a convex
problem. The problem is viewed as convex by estimating fiber orientation from
DT model and then searching for linearly entering parameters only, over a grid
or dictionary of remaining two nonlinearly entering parameters. The approach
converges very fast but needs to be adapted in the presence of three or more non
linearly entering parameters. All estimation algorithms discussed above assume
single, known fiber orientation in a voxel. CAMINO and AMICO rely on this
assumption for further estimation of remaining parameters.

This study aims to suggest an algorithm for estimating multi compartment
brain tissue models parameters without using initial grid search over the whole
parameter range and also without using simpler models for initial estimation.
Rather, problem has been approached by separating linear and nonlinearly enter-
ing parameters. Suggested method converges twice as fast as CAMINO mainly
due to Variable Projection and stochastic global search algorithms to find global
minimum in nonlinear parameters estimation. Suggested algorithm has been
tested with both synthetic data generated by CAMINO and real MRI data. Re-
sults show excellent fitting performance on all data sets and in the presence of
Rician noise.

2 Problem Formulation

Typical estimation problem of multicompartment tissue model parameters from
diffusion MRI data in the presence of offset Gaussian noise [8] is of the following

form:
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where y represents normalized MRI measurements and N is the total num-
ber of measurements available. f = [f1 f2 ... fs]' is vector containing volume



fractions of n compartments. = [x1 2 ... x|  is vector containing m param-
eters on which functions describing diffusion in n compartments depend upon.
Ay, Ay ... A, are chosen as per selected models for Intra-Axonal compartment,
Extra-Axonal compartment, cerebrospinal fluid (CSF) compartment and glial
cells etc. o is standard deviation of noise which is calculated before hand from
bo measurements of MRI. o adds a constant bias to measuements and can eas-
ily be taken care of. By dropping o, we can rewrite objective function in (1)
including constraints as following;:
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where [b and ub represent lower bound and upper bound for unknown de-
terministic variables x. Variables in x will vary with each choice of multicom-
partment model. Known parameters in x have been described in supplementary
material.

3 Suggested Algorithm

Detail of suggested algorithm is given in following four steps.

— Step 1. Variable Projection for Separating Non Linearly Entering
Parameters. We can exploit separable structure of the problem described
in eq (1) by variable separation method as suggested in [6]. We can re-write
our objective function as in (1) in following form:

min ||y — 2(of 3
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For any estimate of ’x’, linear parameters ’f’ can be calculated from linear
least squares as below:

f=2"(a)y (4)
where @ (z) is Moore-Penrose inverse of @ ()
e, of(z)= (D) d(x)) dx)T (5)

by substituting (5) in (3), our objective function takes following form:
min || y — &(x)(S(x)" S(x) " () y |13 (6)
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(7) is called the variable projection functional. With an assumption of @(z)
to have a locally constant rank, it has been proven in [6] that global minimum
of (7) remains the same as global minimum in (3).

— Step 2. Non Linear Parameters Estimation by Genetic Algorithm
(GA). It has been shown in [9] that GA can be used efficiently for NLLS es-
timation of 'z’ for problems of the form (7). Elitism based approach was used
with population size of 24 to 40. Stopping criteria of 70 to 100 generations
was found sufficient for convergence in this problem setting. For implement-
ing GA, toolbox developed by University of Sheffield, and available freely at
university website! was used.

— Step 3. Constrained Linear Parameters Estimation. Once nonlinear
parameters x are known, estimation of linear parameters is a linear least
squares estimation problem as shown in (4).

— Step 4. NLLS Estimation Using Gradient Based Methods. Estimates
after step 3 are fairly accurate however, we can refine the results using gra-
dient based methods (for example MATLAB’s ’lsqcurvefit’) by constrained
NLLS estimation. Also we can reduce number of iteration of GA by employ-
ing this step.

4 Results

4.1 Analysis Using Synthetic Data

Suggested algorithm has been tested with synthetic data generated by open
source software CAMINO [4] using ’datasynth’. Comparison of results can be
shown for following example where data was generated using ’ZepplinCylinder-
Dot’ model with Rician noise at different SNR.

Example Problem - dMRI Data Fitting to ’ZepplinCylinderDot’
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di=dy(1—(fi/(fr + f2)))

Fibre direction vector n = [cos¢sing  singsing  cosf | (9)

For simplicity only unknown parameters have been shown in (8) and described
as following. fi,fo and f3 are Intra-Axonal, Extra-Axonal and CSF compart-
ment volume fractions. d| (diffusion coefficient in parallel to fiber orientation,
fixed for in-vivo) = 1.7e™3 (sec/um?) , d; (sec/um?) is diffusion coefficient

! http://codem.group.shef.ac.uk/index.php/ga-toolbox



in perpendicular to fiber orientation. Constraint given in (8) on d, is from a
simple tortuosity model given in [10]. Axon Radius (average) = R (um) while
0 (rad) and ¢ (rad) give fiber orientation as in (9). Detail of functions describing
e~ Acytinder e=Azeppetin and e~Abet can be found in [7].

Objective Function Analysis . Having synthetic data generated, objective
function given in (8) can be visualized by plotting with assumption of only two
unknowns at a time. Some of the plots are shown in Fig. 1. It can be seen in
Fig. 1 (A) and (C) that if 6 is constrained as in (8), there can be two distinct
solutions for n (180° apart). Fig. 1 (C) shows that if any gradient based method is
used, and initial value of R is greater than a certain point (depending upon true
value of R), solution can never converge to global minimum. This also explains
difficulty in detection of small R values. Fig. 2 shows effect of Rician noise on
objective function. It can be seen that a constant bias is increased with more
noisy signal.
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Fig. 1: Objective Function Plots when, (A) 6 and ¢, (B) R and ¢, (C) R and 6

, are only variables in each case.

A Obective function value with only Theta & Phi as variables

B Objective function value with only Theta & Phi as variables
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Fig.2: Objective Function Plot at (A) SNR =200, (B) SNR =12 for § and ¢ as
only variables.

Comparison of Results with CAMINQO. For all parameter estimates and
at all SNR levels, suggested method shows 100 percent success ratio on syn-
thetic data, which is not the case in CAMINO. Fig. 3 - Fig. 6 show estimated
parameters histograms for 100 runs at SNR = 25. Model fitting was done in
CAMINO using 'modelfit’ with '"MULTIRUNLM’ (100 iterations). R and orien-
tation estimates are not effected by noise using suggested method. However, R
is underestimated by 0.04 — 0.05um at all SNR levels.
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Fig. 3: Histogram of Axon Radius estimates using synthetic data SNR=25 with
True Value of R = 10 pm (A) CAMINO (8 — 12um) (B) Proposed Algorithm
(9.66 — 9.67um) (C) Histograms Superimposed
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Fig. 4: Histogram of v = f1/(fi1 + f2) estimates using synthetic data SNR=25
with True Value of v = 0.7 (A) CAMINO (0.3 — 0.8) (B) Proposed Algorithm

100

80

60

40

20

A

50

40

30

20

10

B

(0.633 — 0.634) (C) Histograms Superimposed

60 1.5524 1.5525
40

20+

(o] 0
15 1.55 16 1.65 17 15524 1.5524 1.5524 1.5525 1.5525 1.5

Fig. 5: Histogram of 6 estimates using synthetic data SNR=25 with True Value of
9 = 1.54 rad (A) CAMINO (1.5—1.7) (B) Proposed Algorithm (1.5524 —1.5525)
(C) Histograms Superimposed
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Fig. 6: Histogram of ¢ estimates using synthetic data SNR=25 with True Value
of ¢ = 1.83 rad (A) CAMINO (—1.43—1.26) (B) Proposed Algorithm (1.8205 —
1.8205)



Time Complexity. Estimation time depends upon number of measurements.
In case of CAMINO it also increases with noisy data. For this example fit-
ting time (per voxel) for CAMINO varied from 10 - 13 seconds while suggested
method took 4.8 seconds at the most. Time was calculated without any parallel
processing on a same machine (corei7 with 12 GB RAM).

4.2 Analysis Using Real MRI Data

Results Using Ex Vivo Monkey Brain Data. Fixed monkey brain data
set! as used in [2], was used to compare results with CAMINO. Data was fit
in CAMINO using 'mmwmdfixed’ model as shown in CAMINO website 2. Four
compartment model ("Zepplelin Cylinder Ball Dot’) as suggested in [2] was used
to estimate parameters using suggested algorithm. Fig. 4 shows radius estimates
comparison while Fig. 5 shows Density Index (p')= f1/(f1 + fo)TR? estimates
comparison for mid-sagittal slice of Corpus Callosum (CC).
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Fig. 7: Results for ex vivo monkey brain data (A) Radius estimates by CAMINO
(B) Radius estimates by Suggested Algorithm (C) Difference (all units in pm)

-0.03

Fig. 8: Results for ex vivo monkey brain data (A)p’ estimates by CAMINO (B)
P’ estimates by Suggested Algorithm (C) Difference

Ezx-vivo Data Results. Results exhibit identical pattern throughout CC i.e.,
densely packed small axon radii in genu and splenium while larger axon radii
with less density in mid-body. However, CAMINO over estimates axon radii in
both genu and splenium region (by around 3 um) and under estimates radii in
mid-body (by around 2 um) as compared to suggested method. Density index
is over estimated in mid-body and under-estimated in genu and splenium region
by CAMINO as compared to suggested method.

Results Using In Vivo Human Brain Data

Data Acquisition. Diffusion MRI data was acquired on a healthy volunteer
using a Siemens 3T Skyra system with voxel size 2 x 2 x 2 mm, and four b-values,
each with 119 directions and 18 additional b=0 volumes.

! http://dig.drcmr.dk/activeax-dataset/
2 http://cmic.cs.ucl.ac.uk/camino/index.php?n=Tutorials. ActiveAx



Data Fitting. Data was fitted in CAMINO using 'mmwmdinvivo’ model. For
suggested method, three compartment model *Zepplelin Cylinder Ball’ (neglect-
ing stationary compartment for in-vivo as suggested in [2]) was used. Fig. 6
shows radius estimates, while Fig. 7 shows p’ estimates comparison for CC .

Fig.9: Results for in-vivo human brain data (A) Radius estimates by CAMINO
(B) Radius estimates by Suggested Algorithm (C) Difference (all units in um)
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Fig. 10: Results for in-vivo human brain data (A) p’ estimates by CAMINO (B)
P’ estimates by Suggested Algorithm (C) Difference

In-vivo Data Results. Results are generally in close match for both methods.
However, CAMINO is over estimating radii in genu outer region, while underes-
timating in splenium inner region.

5 Discussion

Suggested dMRI data fitting method can be used without any modification to all
multicompartment models discussed in [7]. It has been shown that the method
is faster and reliable than any other method involving grid search and Markov
Chain Monte Carlo (MCMC). It does not rely on any assumption like single fiber
orientation, and directly estimates multicompartment parameters from given
dMRI data, independent of any initial guess.
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