
3D Pose Estimation of Daily Objects Using an RGB-D Camera

Changhyun Choi and Henrik I. Christensen
Center for Robotics & Intelligent Machines

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332, USA
{cchoi,hic}@cc.gatech.edu

Abstract— In this paper, we present an object pose estimation
algorithm exploiting both depth and color information. While
many approaches assume that a target region is cleanly seg-
mented from background, our approach does not rely on that
assumption, and thus it can estimate pose of a target object
in heavy clutter. Recently, an oriented point pair feature was
introduced as a low dimensional description of object surfaces.
The feature has been employed in a voting scheme to find a
set of possible 3D rigid transformations between object model
and test scene features. While several approaches using the pair
features require an accurate 3D CAD model as training data,
our approach only relies on several scanned views of a target
object, and hence it is straightforward to learn new objects.
In addition, we argue that exploiting color information signifi-
cantly enhances the performance of the voting process in terms
of both time and accuracy. To exploit the color information, we
define a color point pair feature, which is employed in a voting
scheme for more effective pose estimation. We show extensive
quantitative results of comparative experiments between our
approach and a state-of-the-art.

I. INTRODUCTION

Object recognition and 6-DOF pose estimation are im-
portant tasks in robotic perception. For the last decade,
stable keypoint descriptors [1], [2] have led to successful
progress on object recognition. As these keypoint descriptors
are invariant to changes in illumination and geometric trans-
formation, keypoint correspondences over different images
can be reliably determined. For robotic manipulation, 3D
coordinates of keypoints are generally required as an object
model so that full 6-DOF object pose can be recovered.
These keypoint coordinates can be calculated via structure
from motion [3] or back-projecting 2D keypoints to 3D CAD
model [4].

The keypoint descriptors are suitable for textured objects,
but a large number of daily objects still lack texture. For
the less textured object, edge feature is preferred since it
corresponds to the object boundaries. A common approach
is that a set of edge image templates of an object is known a
priori, and in testing phase the template images are matched
with a given query edge image. In classic computer vision,
the chamfer [5] and Hausdorff [6] distances were proposed as
robust metric, and they were further enhanced by considering
edge orientation [7], [8]. A common method to extract edge
feature from an image is image gradient-based method, such
as Canny edge detector [9]. However, this method often
results in unnecessary edges coming from surface texture or

Fig. 1. Overview. Our approach exploits both geometric shape and color
information in point clouds for robust object pose estimation. The estimated
pose of each object is depicted in color object point cloud. Since our
approach does not hinge upon the planar segmentation, it can be applied in
highly cluttered environment. (Best viewed in color)

non-Lambertian reflectance. To find useful edges from depth
discontinuities, the multi-flash camera [10] was introduced
to determine depth edges by casting shadows from multiple
flashes and was successfully employed in several robotic
pose estimation algorithms [11], [12].

As RGB-D sensors, which provide depth as well as color
information in real-time, have recently been introduced at
low cost, 3D information-based pose estimation can be more
feasible than ever. Compared to 2D images, 3D data are more
invariant to the geometric changes. The iterative-closest point
(ICP) algorithm [13] is well-known for the registration of
3D point clouds, but it requires a good initial pose estimate.
Rusu et al. [14] proposed the Viewpoint Feature Histogram
(VFH) that encodes four angular distributions of surface
normals on a segmented point cloud. As the VFH is not
robust to occlusion and does not allow full pose estimation,
the Clustered Viewpoint Feature Histogram (CVFH) was re-
cently presented [15]. Lai et al. [16] proposed a tree structure
for scalable object recognition and pose estimation, but the
pose estimation is limited in that it can only estimate 1-DOF
rotation of the object pose. Although these approaches can
recognize object pose efficiently, they hinge upon perfect



segmentation from the background. All of these approaches
are applicable for well structured table-top manipulation, but
they are not robust for cluttered environments.

For general object pose estimation, it is required to match
an object model with a scene directly. Like local image
keypoints, several local invariant features have been pro-
posed based on the distribution of surface normal around
a point [17], surface curvature [18], spin image [19], and
relative angles between neighboring normals [20]. While
these features are invariant to rigid body transformation,
they are sensitive to noise and resolution difference of point
clouds.

Drost et al. [21] defined a pair feature using two points
on surfaces and their normals. In the learning phase, a set
of pair features from an object is calculated and saved in
a hash table for fast retrieval. In the testing phase, points
are randomly sampled from the sensor data, and each pair
matched with pairs in the learned model votes for a pose
hypothesis. After the voting process, a set of high votes over
a certain confidence level are aggregated to form possible
object pose hypotheses. The pair feature can be seen as a
successor of the surflet pairs [22], and using a hash table for
fast matching is also presented in [23]. This approach was
recently enhanced by incorporating the visibility context [24]
or considering object boundary information [25]. There are
also several modified Hough transforms for 3D object pose
estimation [26] using the SRT distance [27].

The surface point pair feature is well suited to recog-
nize objects that have rich variations in surface normals.
However, it is not very efficient in representing planar
or self-symmetric objects because a lot of different point
pairs fall into the same hash slot. Although this ambiguity
could be solved via the voting process where different pose
hypotheses are aggregated separately, this certainly degrades
its efficiency. Moreover, when there are a large amount of
background clutter in a test scene, a lot of the point pair
features come from the clutter. If surface shapes of our
object model and the clutter are similar each other, it is
highly likely to have false feature matches and consequently
results in false pose estimates. As such, we need to prune
unnecessary feature matching for more efficient and accurate
pose estimation. We exploit the RGB color information to
prune potentially false matches based on the color similar-
ity. To be more robust to illumination changes, the HSV
(Hue, Saturation, and Value) color space is considered. By
using these additional dimensions, the casted votes in an
accumulator space are more likely to contribute to true pose
hypotheses. Furthermore, the voting process is more efficient
since unnecessary votes are skipped. These arguments are
verified in the following experimental section.

II. RGB-D POSE ESTIMATION

In this section, our pose estimation algorithm is presented.
Staring by explaining the point pair features of [21], we
introduce our new color point pair feature. After explaining
how the new feature is employed during object learning, the
voting scheme will be described.

ni

f3
f2

f4

nj

d

= �d�2

f1 = �pi − pj�2

{pi, ci}{pj, cj}
f8:10 = cj f5:7 = ci

Fig. 2. Color Point Pair Feature (CPPF). The feature is defined by the
relative position (f1), relative orientations (f2, f3, and f4), and colors (f5:7
and f8:10) of the pair of color oriented points {(pi,ni, ci), (pj ,nj , cj)}.

A. Point Pair Features

A pair feature of two oriented points has been em-
ployed in shape-based object recognition [22], [21]. Let
{(pi,ni), (pj ,nj)} denote the pair feature where pi and pj
are the reference and referred points on the object surface,
and nr and ni are their normals respectively. The point pair
feature FPPF ∈ R4 is defined by

FPPF = PPF(pi,pj ,ni,nj) (1)

=


‖d‖2

∠(ni,d)
∠(nj ,d)
∠(ni,nj)

 (2)

where d = pi − pj , and ∠(v1,v2) ∈ [0;π) represents the
angle between two vectors. The first dimension, ‖d‖2 =
‖pi − pj‖2, represents the Euclidean distance between the
two surface points. The second and third components are
angles between the vector d and the surface normal vectors
ni and nj , respectively. The last component is the angle
between the two normal vectors. This feature effectively
encodes geometric constraints of point cloud surfaces so that
efficient matching between model and scene point clouds
is possible, especially when these point clouds contain rich
surface normal variations.

B. Color Point Pair Features

Even though the PPF might be suitable for objects hav-
ing rich variations in surface normals, it is generally not
discriminative enough to describe planar or self-symmetric
objects. Hence it is required to augment the pair feature
so that the feature will be more effective to these types of
objects. The color point pair feature FCPPF ∈ R10 is defined
by concatenating two 3D color vectors of the points:

FCPPF = CPPF(pi,pj ,ni,nj , ci, cj) (3)

=

PPF(pi,pj ,ni,nj)
ci
cj

 (4)



Algorithm 1: BuildHashTable(M)
Data: M = {(pm1 ,nm1 , cm1 ), · · · , (pmNm ,n

m
Nm , c

m
Nm)}

Result: H
Params: δ, θ,σ

1: H ← {φ}
2: for i← 1 to Nm do
3: for j ← 1 to Nm do
4: if i 6= j then
5: F← CPPF(pmi ,p

m
j ,n

m
i ,n

m
j , c

m
i , c

m
j ) (4)

6: I ← HashIndex(F, δ, θ,σ) (6)
7: αm ← PlanarRotAngle(ni,pmi ,p

m
j ) (§II-D)

8: H ← HashInsert(H, I, {αm, i})

Algorithm 2: RGB-D Pose Estimation
Data: H,M,S = {(ps1,ns1, cs1), · · · , (psNs ,n

s
Ns , c

s
Ns)}

Result: P = {P1,P2, · · · ,PNp}
Params: Np, γs, τv, δ, θ,σ

1: if H = {φ} then
2: H ← BuildHashTable(M, δ, θ,σ) 〈1〉
3: A← 0Nm×bπθ c
4: P ← {φ}
5: for h← 1 to bNs · γsc do
6: i← RandomSample(Ns)
7: for j ← 1 to Ns do
8: if i 6= j then
9: F← CPPF(psi ,p

s
j ,n

s
i ,n

s
j , c

s
i , c

s
j) (4)

10: I ← HashIndex(F, δ, θ,σ) (6)
11: αs ← PlanarRotAngle(nsi ,p

s
i ,p

s
j)

12: while {αm, im} ← HashSearch(H, I) do
13: α← αm − αs (11)
14: iα ← bαθ c
15: A(im, iα)← A(im, iα) + 1

16: Ts→g ← InterTransform(psi ,n
s
i)

17: {V.im ,V.iα} ← PickHighVotes(A, τa)
18: foreach v ∈ V do
19: Tm→g ← InterTransform(pmv.im ,n

m
v.im

)

20: P ← P ∪ GetPose(Ts→g ,Tm→g , v.iα) (8)

21: P ← PoseClustering(P, Np) (§II-E)

where ci and cj ∈ R3 are color vectors. For generality, each
color channel is normalized as c ∈ [0; 1]. Fig. 2 illustrates
the CPPF.

C. Object Learning

Given a set of object point clouds, an object representation
is learned globally by calculate all possible CPPF from the
training data. While several approaches [21], [25] require
known CAD model of the object for training, our approach
directly learns from scanned point clouds of the object. Thus
our approach can easily learn new objects although their
CAD models are not available. Once the set of CPPF features
are calculated, it is saved in a hash table data structure H
for efficient feature matching [23], [21].

To use the CPPF as the key for hash table, we need to

α
x

y

z

Tm→g

Ts→g

ps
i

ps
j

pm
j�

pm
i�

nm
i�

αm

αs

ns
i

pm
j�

ps
j

ns
i ,n

m
i�

ps
i ,p

m
i�

Fig. 3. Aligning pair features in the intermediate coordinate
system. By Ts→g , the scene reference point psi is moved to the
origin and its orientation (normal or direction) nsi is aligned to
the x-axis. The model reference point is similarly transformed by
Tm→g , such that the positions and orientations of the reference
points are aligned. The referred points psj and pmj′ are then aligned
by a rotation with angle α around the x-axis.

quantize the feature descriptors:

I = HashIndex(FCPPF, δ, θ,σ) (5)

=



b‖d‖2δ c
b∠(ni,d)

θ c
b∠(nj ,d)

θ c
b∠(ni,nj)

θ c
bci � σc
bcj � σc


(6)

where δ ∈ R, θ ∈ R,σ ∈ R3 are quantization levels for
distance, angle, and color vectors, respectively. The symbol
� denotes component-wise division.

With this index I of the feature FCPPF, necessary infor-
mation for pose estimation is saved in an entry of the hash
table H. By storing the features in H, similar CPPFs are
grouped together in the same slot, and matching with scene
CPPFs can be done in constant time on average.

The object learning process is presented in Algorithm 1
where referred equations and sections are marked as (·) and
(§·) in the comments area, respectively. Given object model
point cloudsM, the algorithm returns the learned hash table
H. The Nm designates the number of points in M. The αm
is the intermediate angle that will be explained in Section II-
D. The quantization parameters δ, θ,σ are important to set.
While choosing very large levels reduce discriminative power
of the feature, using very small levels make the algorithm
sensitive to noise. In our experiment, we empirically found
that δ = 2 (mm), θ = 10◦, and σ = (0.1, 0.1, 0.4)T

work well. For the color quantization levels σ, we use the
HSV color space. The V (value or intensity) channel is
not generally invariant to illumination changes, and hence
a larger level (0.4) is used. Although we empirically found
these parameters, searching optimal parameters possibly for
each object would be interesting future work.



Fig. 4. Test Objects. Ten daily objects were chosen. Each object model is learned by combining multiple views of object point clouds.
From left to right: Clorox, Flash, Kuka Mug, Milk, MVG Book, Orange Juice, Pringles, Starbucks Mug, Tide, and Wrench.

D. Voting Scheme

Let’s assume that we found a correct match of CPPFs
between scene and model point clouds. As described in
Fig. 3, we can align two normal vectors {nsi ,nmi′ } of the
two reference points {psi ,pmi′ } in an intermediate coordinate
system. The alignment of two reference points constrains
3-DOF translation and the alignment of the two normals
further constrains 2-DOF rotation. Therefore, there is only
1-DOF rotation ambiguity α ∈ R around the x-axis of the
intermediate coordinate system. Once the α is determined
by the two vectors psj − psi and pmj′ − pmi′ , we can recover
the pose of the object, P ∈ SE(3), which is the full 6-DOF
rigid body transformation from the model coordinate system
to the scene coordinate system via

P = Tm→s (7)

= T−1s→gRx(α)Tm→g (8)

where Rx(α) is the rotation around the x-axis with angle
α, Ts→g ∈ SE(3) and Tm→g ∈ SE(3) are the transfor-
mations from the scene and model coordinate systems to
the intermediate coordinate system, respectively. For a quick
verification, the referred points {psj ,pmj′ } can be aligned by
P as

psj′ = Ppmj′ (9)

= T−1s→gRx(α)Tm→gp
m
j′ . (10)

It is possible to choose any arbitrary intermediate coor-
dinate system, but a trivial choice is choosing the sensor
coordinate system.

Unfortunately, the aforementioned assumption of a correct
correspondence between two CPPFs is not always valid. In
reality, there is a nontrivial amount of similar geometric
and colored surfaces between the actual object and cluttered
background point clouds. Due in part to sensor noise and to
illumination changes, it happens that these similar regions
result in incorrect pose hypotheses. To address this issue, a
voting process is performed so that it finds the most likely
pose hypothesis from the bin earned the maximum number
of votes [21]. Since there is two associations {pmi′ , α} given
a scene CPPF, we need to create a 2D accumulator space
A ∈ RNm×bπθ c for the voting process. Each corresponding
model CPPF searched from the hash table H casts a vote in
the space A such that high votes in A are highly likely to be
valid poses. Note that the α could be calculated online, but it
is more efficient if αm, the angle between the vector pmj′−pmi′

and the upper xy half-plane, is pre-calculated and saved in
H. Then all α for every corresponding model features can
be determined by one calculation of αs and cheap minus
operations as

α = αm − αs. (11)

Algorithm 2 deliberatively describes the voting process.
Referred equations, algorithms, and sections are cited as
(·), 〈·〉, and (§·) in the comments area, respectively. As
inputs, it takes the hash table H, the object model point
clouds M, and Ns points of the test scene point cloud
S. It then returns Np pose hypotheses P as outputs. Both
the sampling ratio γs of scene points and the threshold for
voting τv control the trade-off between speed and accuracy.
In our experiment, we consider Np = 10 pose hypotheses
and examine all scene points γs = 1.0. We usually set
τv = 10 but slightly tune depending on the size of the object.
The RandomSample(N) returns a random number between
1 and N without repetition, and InterTransform(p,n)

calculates the aligned transform using given set of point p
and normal n. Lastly, PoseClustering(P, Np) clusters the
raw pose hypotheses P together in a set of Np grouped poses
that will be explained in the following section.

E. Pose Clustering

In Algorithm 2, the pose hypotheses P appended per each
outer voting loop are directly resulted from the CPPFs of
the i-th reference scene point and remaining referred scene
points. It means that another reference scene point also may
result in pose hypotheses similar to some of the P . This
fact is valid until the object is a rigid body. Therefore, a
post-processing is required so that similar poses are grouped
together to give more stable results [21], [24], [25]. Since
advanced clustering methods such as mean shift [28], [27] are
computationally expensive, we employ an efficient agglom-
erative clustering. The function PoseClustering(P, Np)
takes un-clustered pose hypotheses P as an input, and sort
them in decreasing order of the number of votes. Starting by
creating a new cluster with the pose hypothesis having the
highest votes, similar poses are grouped together. If a pose
is far from the existing clusters, a new cluster is created.
The distance testing of between poses is based on a fixed
thresholds in translation and rotation. When the clustering
is finished, the cluster are sorted again, and top Np pose
clusters are returned.



0 1 2 3
0

0.2

0.4

0.6

0.8

1
Clorox

Gaussian noise σ (mm)

D
e
te

c
ti
o
n
 r

a
te

0 1 2 3
0

0.2

0.4

0.6

0.8

1
Flash

Gaussian noise σ (mm)

D
e
te

c
ti
o
n
 r

a
te

0 1 2 3
0

0.2

0.4

0.6

0.8

1
Kuka Mug

Gaussian noise σ (mm)

D
e
te

c
ti
o
n
 r

a
te

0 1 2 3
0

0.2

0.4

0.6

0.8

1
Milk

Gaussian noise σ (mm)

D
e
te

c
ti
o
n
 r

a
te

0 1 2 3
0

0.2

0.4

0.6

0.8

1
MVG Book

Gaussian noise σ (mm)

D
e
te

c
ti
o
n
 r

a
te

0 1 2 3
0

0.2

0.4

0.6

0.8

1
Orange Juice

Gaussian noise σ (mm)

D
e
te

c
ti
o
n
 r

a
te

0 1 2 3
0

0.2

0.4

0.6

0.8

1
Pringles

Gaussian noise σ (mm)

D
e
te

c
ti
o
n
 r

a
te

0 1 2 3
0

0.2

0.4

0.6

0.8

1
Starbucks Mug

Gaussian noise σ (mm)

D
e
te

c
ti
o
n
 r

a
te

0 1 2 3
0

0.2

0.4

0.6

0.8

1
Tide

Gaussian noise σ (mm)

D
e
te

c
ti
o
n
 r

a
te

0 1 2 3
0

0.2

0.4

0.6

0.8

1
Wrench

Gaussian noise σ (mm)

D
e
te

c
ti
o
n
 r

a
te

 

 

Our approach

Drost et al.

Fig. 5. Detection rates against Gaussian noise σ. As σ increases, the performance of both approaches decrease. But in general our approach clearly
outperforms Drost et al. [21] in every objects.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Clorox

Recall

P
re

c
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Flash

Recall

P
re

c
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Kuka Mug

Recall

P
re

c
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Milk

Recall

P
re

c
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

MVG Book

Recall

P
re

c
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Orange Juice

Recall

P
re

c
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Pringles

Recall

P
re

c
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Starbucks Mug

Recall

P
re

c
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Tide

Recall

P
re

c
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Wrench

Recall

P
re

c
is

io
n

 

 

Our approach

Drost et al.

Fig. 6. Precision-recall curves for the noise experiment. These curves were drawn by varying the threshold on the total number of votes of the Np
pose results. It turns out that our CPPF is more robust to Gaussian noise than the PPF of Drost et al. [21].

III. EXPERIMENTAL RESULTS

In this section, we present a set of comparative experi-
ments between Drost et al. [21] and our approach. First, we
compare the performance of the two approaches with respect
to Gaussian noise in Section III-A. Second, the performance
of the two approaches are evaluated in highly cluttered scenes
in Section III-B.

As test objects, 10 daily objects were chosen as shown
in Fig. 4. For object training data, multiple views of point
clouds were registered. To efficiently register the multiple
point clouds, a chess board was placed in a planar back-
ground so that initial transformations between views are
determined. After refining the registration using ICP [13],
the object is segmented from the planar background. We
combined 4 scans per object. The Kinect sensor was used
to scan both object and test scene point clouds. All model
and scene point clouds are subsampled in 2.5D depth images
per 4 pixels and 7 pixels respectively.

A. Gaussian Noise

To examine the performance with respect to noise, we
added Gaussian noise to object point clouds with different

Fig. 8. Adding Gaussian noise in object point clouds. To compare
performance of CPPF with that of PPF, noisy object point clouds were
generated. From left to right: σ = 0.0, σ = 1.0, σ = 2.0, and σ = 3.0
(mm).

standard deviations as shown in Fig. 8. Each object has 4
model point clouds, and the range of standard deviations are
0.0, 0.5, · · · , 3.0 (mm). For statistically meaningful results,
10 different test clouds were generated for each test. Thus
the total number of tested point clouds are 4×7×10 = 280.
With the known pose of each object point cloud, we counted
the number of true positives, which are within 10 (mm) for
translation and 10◦ for rotation.

Fig. 5 presents detection rates with respect to the different
Gaussian noise. Not surprisingly, the performance of both



Fig. 7. Selected pose estimation results of Drost et al. [21] (second row) and our approach (third row). The first row shows the color image of
scanned scenes. Correct pose estimates are depicted in color point clouds in second and third rows. In cluttered scenes, [21] works poorly because the low
dimensional PPF feature does not give good matches between the model and the scene. Using the color information, CPPF is more discriminative so that
pose results from the voting scheme result in the true positive poses. (Best viewed in color)

approaches decrease as the noise level σ increases. However,
the graphs clearly show that our approach outperforms Drost
et al. [21] in every case. As the original object point clouds
are perturbed by the noise, it happens that the PPF and
CPPF have false feature matches. These false matches result
in wrong pose hypotheses, and thus the final detection
results are worsen. However, the CPPF is more discriminative
than the PPF mainly due to the color channels. Since a
large number of false matches are skipped based on the
color similarity, the detection rates are much better than the
PPF. The results are also shown as precision-recall curves
in Fig. 6. The precision-recall curves were generated by
varying the threshold value on the total number of votes
of the first pose cluster having the maximum number of
votes. The performance differences slightly vary over the
test objects, but the overall trend is that our approach shows
better detection performance against the Gaussian noises. It
is more clear in “Clorox”, “Kuka Mug”, “Orange Juice”, and
“Starbucks Mug”.

B. Cluttered Scene

As shown in the previous section, both PPF and CPPF
work well when there is no clutter. But in real scenarios,
robots often need to work in highly cluttered environments
in which segmenting each object from the background is
impossible like the scenes in Fig. 7. For the test scenes,
we put random subsets of our test objects in a paper box
with random poses. All other objects not in our test objects
were placed as clutter. We captured 31 test scenes, and 7 of
them were captured by changing illumination with a non-
white lamp. The scene of the right most column in Fig. 7
is one example. For evaluation, the ground truth pose of
the objects were carefully annotated. We first performed

both pose estimation approaches on the test scenes and ran
ICP [13] algorithm starting from the pose results. If the
refined poses are close enough to the true pose, we saved
them for quantitative analysis. The criterion for correct pose
is that differences between a pose and the corresponding
ground truth pose are within 15 (mm) for translation and 15◦

for rotation. Note that we chose slightly bigger thresholds
than the thresholds used in the noise experiment because even
well estimated ground truth still possesses small amount of
errors.

Fig. 7 shows selected pose estimation results from the 31
scenes. The images in the first row are test scene images
captured from the Kinect, and the second and third rows
represents estimated poses of Drost et al. [21] and our
approach in the scene point clouds respectively. For clear
visualization, only correct poses are depicted in color point
clouds. Please note that any pose refinement processes were
not performed for fair comparison between two approaches,
though the additional refinements would enhance the final
pose accuracy. While [21] recognized at most one object pose
per scene, our approach recalled at least more than half of
the test objects. It is more clear from precision-recall curves
in Fig. 9. Similar to Fig. 6, these precision-recall curves
were drawn by varying the threshold value on the number
of votes of the best pose cluster. While the performance
of our approach is promising, the performance of Drost et
al. [21] is extremely not encouraging for these cluttered
scenes. Especially, it did not report any true positive poses
in some objects such as,“Flash”, “Kuka Mug”, “Starbucks
Mug”, and “Wrench”. For other objects, the recalls do not
reach to 50%, and the precisions are no more than 10%.

Both approach returns Np = 10 pose results, and these
multiple poses are sorted in decreasing order of the number



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Clorox

Recall

P
re

c
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Flash

Recall

P
re

c
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Kuka Mug

Recall

P
re

c
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Milk

Recall

P
re

c
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

MVG Book

Recall

P
re

c
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Orange Juice

Recall

P
re

c
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Pringles

Recall

P
re

c
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Starbucks Mug

Recall

P
re

c
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Tide

Recall

P
re

c
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Wrench

Recall

P
re

c
is

io
n

 

 
Our approach

Drost et al.

Fig. 9. Precision-recall curves for cluttered scene experiments. While our approach reports good precision as well as high recall, Drost et al. [21]
works poorly in highly cluttered background.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Clorox

Top N

R
e
c
o
g
n
it
io

n
 r

a
te

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Flash

Top N

R
e
c
o
g
n
it
io

n
 r

a
te

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Kuka Mug

Top N

R
e
c
o
g
n
it
io

n
 r

a
te

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Milk

Top N

R
e
c
o
g
n
it
io

n
 r

a
te

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
MVG Book

Top N

R
e
c
o
g
n
it
io

n
 r

a
te

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Orange Juice

Top N

R
e
c
o
g
n
it
io

n
 r

a
te

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Pringles

Top N

R
e
c
o
g
n
it
io

n
 r

a
te

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Starbucks Mug

Top N

R
e
c
o
g
n
it
io

n
 r

a
te

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Tide

Top N

R
e
c
o
g
n
it
io

n
 r

a
te

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Wrench

Top N

R
e
c
o
g
n
it
io

n
 r

a
te

 

 
Our approach

Drost et al.

Fig. 10. Recognition rate of top N pose results. If the ground truth pose is within the top N poses, it is counted as a true positive. While [21] reports
poor recognition rates, our approach shows outstanding performance.

TABLE I
AVERAGE AND RELATIVE PROCESSING TIME.

Algorithm Average Time† (sec) Relative Time

Drost et al. [21] 49.208 1.52
Our 32.379 1.00

† Run on a standard desktop, Intel Core2 Quad CPU with 4G RAM.

of votes. Thus it is interesting to examine the recognition
rate with respect to the top N poses. The recognition rate of
top N poses on each object is presented in Fig. 10. If the
ground truth pose is within the top N poses, we counted it as
a true positive. According to Fig. 10, the recognition rates
increase as the considered number of results N increases.
For both results, the recognition rates are mostly saturated
around N = 3, which means that the pose hypothesis having
higher number of votes is more likely to be the true positive.
Note that the best rate of [21], “Orange Juice”, is no higher
than 50%, while more than half of our results exceed 80%
recognition rates.

Our approach is not only more accurate but also more
efficient. Our algorithm is efficient due to the sparsity of
correspondences between CPPFs. While the PPFs from sim-

ilar geometric model surfaces are grouped into the same hash
slot, the CPPFs from the surfaces are fallen to multiple slots
based on the color characteristics. Thus the CPPFs are more
broadly distributed in the hash table than the PPFs. This fact
leads to more efficient voting algorithm since the number of
actual voting is way lower. In addition, since the number of
raw pose hypotheses is also lower, the pose clustering process
is consequently more efficient. The average processing time
of both approaches, which is required to estimate the pose of
each object, is shown in Table I, where our approach is 1.52
times faster than the work of Drost et al. [21] on average.

IV. CONCLUSIONS

We presented a voting-based pose estimation algorithm by
combining geometric and color information from an RGB-
D camera. Our approach learned each object model by
scanning multiple point clouds of the object, hence it does
not assume an accurate 3D CAD of the object. We have
shown a set of comparative experimental results between
our approach and the state-of-the-art and verified that our
approach outperformed the compared one in terms of both
time and accuracy.



V. ACKNOWLEDGMENTS

This work has in part been sponsored by the Boeing
Corporation. The support is gratefully acknowledged.

REFERENCES

[1] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, vol. 60, no. 2, pp.
91–110, 2004.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up robust
features (SURF),” Computer Vision and Image Understanding, vol.
110, no. 3, pp. 346–359, 2008.

[3] A. Collet, D. Berenson, S. S. Srinivasa, and D. Ferguson, “Object
recognition and full pose registration from a single image for robotic
manipulation,” in Proceedings of IEEE International Conference on
Robotics and Automation (ICRA), 2009, pp. 48–55.

[4] C. Choi and H. I. Christensen, “Robust 3D visual tracking using parti-
cle filtering on the SE(3) group,” in Proceedings of IEEE International
Conference on Robotics and Automation (ICRA), 2011.

[5] H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf, “Para-
metric correspondence and chamfer matching: Two new techniques for
image matching,” in Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI), vol. 2, 1977, pp. 659–663.

[6] D. P. Huttenlocher, G. A. Klanderman, and W. A. Rucklidge, “Com-
paring images using the Hausdorff distance,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, pp. 850–863, 1993.

[7] C. Olson and D. Huttenlocher, “Automatic target recognition by match-
ing oriented edge pixels,” IEEE Transactions on Image Processing,
vol. 6, no. 1, pp. 103–113, 1997.

[8] M.-Y. Liu, O. Tuzel, A. Veeraraghavan, and R. Chellappa, “Fast
directional chamfer matching,” in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2010, pp. 1696–
1703.

[9] J. Canny, “A computational approach to edge detection,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 8, no. 6,
pp. 679–698, Nov. 1986.

[10] R. Raskar, K. Tan, R. Feris, J. Yu, and M. Turk, “Non-photorealistic
camera: Depth edge detection and stylized rendering using multi-flash
imaging,” ACM Transactions on Graphics, vol. 23, pp. 679–688, 2004.

[11] A. Agrawal, S. Yu, J. Barnwell, and R. Raskar, “Vision-guided robot
system for picking objects by casting shadows,” International Journal
of Robotics Research, vol. 29, no. 2–3, pp. 155–173, 2010.

[12] M.-Y. Liu, O. Tuzel, A. Veeraraghavan, R. Chellappa, A. Agrawal,
and H. Okuda, “Pose estimation in heavy clutter using a multi-flash
camera,” in Proceedings of IEEE International Conference on Robotics
and Automation (ICRA), 2010, pp. 2028–2035.

[13] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.
239–256, 1992.

[14] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3D recognition
and pose using the viewpoint feature histogram,” in Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2010.

[15] A. Aldoma, M. Vincze, N. Blodow, D. Gossow, S. Gedikli, R. Rusu,
and G. Bradski, “CAD-model recognition and 6DOF pose estimation
using 3D cues,” in IEEE International Conference on Computer Vision
Workshops (ICCV Workshops), 2011, pp. 585–592.

[16] K. Lai, L. Bo, X. Ren, and D. Fox, “A scalable tree-based approach for
joint object and pose recognition,” in AAAI Conference on Artificial
Intelligence, 2011.

[17] F. Stein and G. Medioni, “Structural indexing: Efficient 3-D object
recognition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 14, no. 2, pp. 125–145, 1992.

[18] C. Dorai and A. Jain, “COSMOS-A representation scheme for 3D free-
form objects,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 19, no. 10, pp. 1115–1130, 1997.

[19] A. E. Johnson and M. Hebert, “Using spin images for efficient object
recognition in cluttered 3D scenes,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 21, no. 5, pp. 433–449, May
1999.

[20] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(FPFH) for 3D registration,” in Proceedings of IEEE International
Conference on Robotics and Automation (ICRA), 2009, pp. 3212–
3217.

[21] B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model globally, match
locally: Efficient and robust 3D object recognition,” in Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2010.

[22] E. Wahl, U. Hillenbrand, and G. Hirzinger, “Surflet-pair-relation his-
tograms: A statistical 3D-shape representation for rapid classification,”
in Proceedings of International Conference on 3-D Digital Imaging
and Modeling (3DIM), Oct. 2003, pp. 474–481.

[23] A. S. Mian, M. Bennamoun, and R. Owens, “Three-dimensional
model-based object recognition and segmentation in cluttered scenes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.
1584–1601, 2006.

[24] E. Kim and G. Medioni, “3D object recognition in range images
using visibility context,” in Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2011, pp. 3800–
3807.

[25] C. Choi, Y. Taguchi, O. Tuzel, M. Liu, and S. Ramalingam, “Voting-
Based pose estimation for robotic assembly using a 3D sensor,”
in Proceedings of IEEE International Conference on Robotics and
Automation (ICRA), 2012 (To appear).

[26] O. Woodford, M. Pham, A. Maki, F. Perbet, and B. Stenger, “Demist-
ing the hough transform for 3D shape recognition and registration,”
in Proceedings of British Machine Vision Conference (BMVC), 2011.

[27] M. Pham, O. Woodford, F. Perbet, A. Maki, B. Stenger, and R. Cipolla,
“A new distance for scale-invariant 3D shape recognition and registra-
tion,” in Proceedings of IEEE International Conference on Computer
Vision (ICCV), 2011.

[28] O. Tuzel, R. Subbarao, and P. Meer, “Simultaneous multiple 3D
motion estimation via mode finding on lie groups,” in Proceedings
of IEEE International Conference on Computer Vision (ICCV), 2005,
pp. 18–25.


