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Hierarchical Analysis of Power Distribution Networks

Min Zhao, Rajendran V. Panda, Sachin S. Sapatnekar, David Blaauw

Abstract— Careful design and verification of the power dis-
tribution network of a chip are of critical importance to en-
sure its reliable performance. With the increasing number
of transistors on a chip, the size of the power network has
grown so large as to make the verification task very chal-
lenging. The available computational power and memory
resources impose limitations on the size of networks that
can be analyzed using currently known techniques. Many
of today’s designs have power networks that are too large
to be analyzed in the traditional way as flat networks. In
this paper, we propose a hierarchical analysis technique to
overcome the aforesaid capacity limitation. We present a
new technique for analyzing a power grid using macromodels
that are created for a set of partitions of the grid. Efficient
numerical techniques for the computation and sparsification
of the port admittance matrices of the macromodels are pre-
sented. A novel sparsification technique using a 0-1 integer
linear programming formulation is proposed to achieve su-
perior sparsification for a specified error. The run-time and
memory efficiency of the proposed method are illustrated
on industrial designs. It is shown that even for a 60 mil-
lion node power grid, our approach allows for an efficient
analysis, whereas previous approaches have been unable to
handle power grids of such size.

I. INTRODUCTION

With the increase in the complexity of VLSI chips, de-
signing and analyzing a power distribution network has be-
come a challenging task. A robust power network design
is essential to ensure that the circuits on a chip operate
reliably at the guaranteed level of performance. A poorly
designed power network can become the cause for a variety
of problems such as loss of circuit performance, noise gen-
eration, and electromigration failures. With the increased
power level and device densities of microprocessors in sub-
micron technologies, these problems are more likely unless
serious attention is given to power network design. Critical
to obtaining a robust design is the ability to analyze the
network efficiently several times in the design cycle. Several
previously published research works[1], [2], [3], [4], [5], [6],
[7], [8] discuss methodologies and techniques to accomplish
this task efficiently.

The difficulty in power network analysis stems mainly
from three sources: (i) the network is very large, typically
1 million to 100 million nodes, (ii) the network is nonlinear
as it contains switching devices, and (iii) the voltage and
current distribution in the network is dependent on the in-
struction executed on the processor. Our work, presented
in this paper, addresses the first problem. The second
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problem is circumvented traditionally [1], [9] by performing
nonlinear simulation of individual circuit blocks without
including the parasitics in the power interconnects, and
then simulating the power interconnect as a whole using
the time-variant current profiles, obtained in the nonlinear
simulation as the excitation sources. The third problem
is one of obtaining a good coverage of all possible worst-
case power demand situations. Manually generated “hot
loops,” an extensive set of input vectors, and statically gen-
erated worst-case current profiles[10], [11], [12], [13], [6] are
some of the alternatives that address the worst-case cover-
age issue. Recently, frequency domain based construction
of worst-case current profile including inductive effects has
been proposed [14].

The first problem becomes a critical issue due to the
rapid increase of the number of transistors on a chip. At
the current technological level, it is seen that the avail-
able computing resources are insufficient to simulate very
large power grids of today’s microprocessors using a flat
model. The size of the power grid of a typical high per-
formance microprocessor in 0.18 micron design, and using
6-9 layers of metal, is in the range of 30 million to 120
million nodes. Moreover, the power grid simulation would
require solving a linear system of similar size at multiple
time points. Clearly, the speed and memory capacity of a
typical computing environment is insufficient to solve such
a large system even with the most efficient linear system
solution techniques.

The size based complexity of the problem has been ad-
dressed in several works [1], [2], [8]. The approaches in
[1], [2] proposed the usage of very efficient sparse linear
system solution techniques. Cholesky factorization (direct
method)[15] and conjugate gradient techniques with pre-
conditioners (iterative method)[15] have been used to solve
the linear system associated with the power grid. These
specialized techniques operate very efficiently by exploit-
ing the special structure and properties of the underlying
linear system. However, the solutions proposed earlier have
applied these techniques to a flat (nonhierarchical) model
of the power network. As a result, there is a serious limita-
tion on the size of the problem they can solve, the limita-
tion being imposed by the amount of memory available for
computation. The work in [8] proposed a PDE-like multi-
grid method for the simulation of large power grids. This
method, which is particularly attractive for mesh grids, re-
duces the size complexity by solving several coarser meshes
and then extrapolating the results to the original fine mesh.
Therefore, this method solves the network approximately
and can result in an unpredictable error, especially for
non-uniform(non-mesh) grid structures. Finally, in [5] a
frequency based analysis formulation is proposed. While
this approach can be efficient for repetitive signals , it will
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not perform well for irregular simulation vectors. Also, it
suffers from the same size limitation as the time domain
method described in [1], [9].

In this work, we propose a hierarchical analysis technique
to overcome the limitations of the earlier approaches. Our
approach comprises of the following steps: (1) Partitioning
of the power grid into local and global grids using the hier-
archical structure in the design or automatic partitioning
techniques, (2) Generating macromodels for the local grids
using efficient numerical methods, (3) Sparsifying the port
admittance matrices of the macromodels, while maintain-
ing the accuracy of the solution, (4) Simulating the global
grid after augmenting it with the macromodels of the lo-
cal grids, and finally, (5) Simulating the local grids where
desired. Of these, Steps (2),(3) and (5) are parallelizable.

The basic strength of the proposed approach is derived
from the well-known strategy of “divide and conquer,”
which is realized through partitioning. The approach also
enables the parallel computation of the task. However, the
efficiency and usefulness of the hierarchical approach is sen-
sitive to several factors, such as the partitioning technique,
the memory and runtime costs involved in generating the
macromodels, and the size and density of the macromod-
els. Our work in this research addresses these problems in
order to realize a practical and efficient implementation of
the hierarchical analysis strategy. We propose a partition-
ing technique that can handle extremely large power grids
and effectively reduce the memory and computation time
required. Moreover, a novel matrix sparsification technique
based on 0-1 integer linear programming is proposed to fur-
ther reduce the memory requirements. Additionally, an ef-
ficient numerical procedure for calculating the macromod-
els is given. The computation takes advantage of the fact
that the underlying linear system is symmetric and posi-
tive definite. The proposed approach has been applied to
the analysis of the power grid of a number of high perfor-
mance microprocessors and DSP chips, obtaining signifi-
cant memory and runtime advantages over the flat model
analysis approach.

The approach can be applied to power grid models that
include package inductance without modification using the
method described in [7]. In addition, the approach can
be applied to RLC model as long as the inductance inter-
acts between the partitions are not considered. In RLC
model of the flat method, the modified nodal formulation
will no longer be positive definite, and can not longer be
solved using efficient Cholesky factorization, hence leading
to increased run time. The hierarchical analysis method
proposed here suffer from the same inefficiency degrada-
tion as the flat method. However, in practice, inductance
effects usually are important for the upper layer of metal,
which can be easily put into the global partition, and the
inductance of lower layer of metal can be ignored. In this
case, the similar method as [7] can be applied to solve the
RLC model efficiently. In this paper, we will restrict our
discussion to RC power grid models for the purpose of ex-
planation.

The remainder of the paper is organized as follows. In

Section 2, we present the concept of macromodeling, the
partitioning strategy, and the computational techniques
for generating the macromodels. In Section 3, the matrix
sparsification technique is explained. Section 4 reports the
performance results of the proposed approach for a set of
benchmark designs, followed by conclusions in Section 5.

II. MACROMODELING APPROACH
A. Owverview of Power Grid Simulation

Before presenting the macromodeling approach, we
present an overview of power grid simulation in general.
A chip’s power distribution system is modeled as a lin-
ear RLC network with independent time-varying current
sources modeling the switching currents of the transistors.
Simulating the network requires solving the following sys-
tem of differential equations, which are formed in a typical
approach such as the Modified Nodal Analysis (MNA)[16]
approach:

G -x(t) + C-x'(t) = b(?), (1)

where G is a conductance matrix, C is the admittance
matrix resulting from capacitive and inductive elements,
x(t) is the time-varying vector of voltages at the nodes, and
currents through inductors and voltage sources, and b(t)
is the vector of independent time-varying current sources.
This differential system is very efficiently solved in the time
domain by reducing it to a linear algebraic system

(G +C/h)-x(t) =b(t) + C/h-x(t —h),  (2)

using Backward Euler (BE) technique with a small fixed
time step, h. The BE reduction with fixed time stepping
is advantageous for transient simulation since the left hand
side (LHS) matrix (G + C/h), referred to as the coeffi-
cient matrix, is rendered stationary, allowing either pre-
processing or factoring of the matrix for a one-time cost
and reusing it efficiently to solve the system at successive
time points.

When x consists only of node voltages, as in the case of
a modified nodal formulation of a network with R’s, C’s,
and only of current sources, the coefficient matrix can be
shown to be symmetric and positive definite. The symmet-
ric positive definiteness of the coefficient matrix, which is
also very sparse, is especially attractive as the system can
now be solved very efficiently using specialized linear sys-
tem solution techniques, such as Cholesky factorization (di-
rect method) and Conjugate Gradient (iterative method)
techniques. The direct method through Cholesky factors is
very cost-effective for simulations at multiple time points,
as the expensive step of factoring is performed only once
and its cost is amortized over multiple time point solu-
tions. Successive solutions would involve only inexpensive
forward and backward substitution procedures. Although
the macromodeling techniques presented in this paper are
suitable for use with either type of solution approach, direct
or indirect, we will assume, for simplicity of presentation,
that the underlying linear solver is direct.
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B. Proposed Approach

The run time and memory requirement for solving a lin-
ear system is determined primarily by the size, sparsity,
and structure of the coefficient matrix. If the network is
very large (107 - 10® nodes), the available physical and
virtual memory of the system is insufficient even for load-
ing in the data associated with the network. Even if the
base memory requirement is met, memory demand quickly
grows during the matrix factorization process, due to new
fills being created. Given a reordering scheme, the num-
ber of fills created is determined by the initial sparsity and
structure of the matrix. The sparsity is given by the ratio
of the number of elements in the network to the number
of nodes. While tree-like network structures have few fills,
mesh structures which are common in power grid networks
generally tend to have a large number of fills during fac-
torization. The amount of matrix computation being very
sensitive to the sparsity and fill pattern, it is very desirable
to have the initial matrix as sparse as possible. The ob-
jective of the proposed approach is, hence, twofold - (i) to
reduce the size of the problem, and (ii) to maintain a high
degree of sparsity in the reduced problem.

The first objective is met by partitioning the given net-
work into subnetworks of manageable size, and solving the
network by solving the sub-pieces individually. Since the
entire network is tightly connected, we cannot ignore the
interaction between the various partitions without incur-
ring significant error. Hence, in order to account for the
interactions between partitions, while at the same time not
enlarge the size of the problem at hand, we use models for
the partitions that capture their behavior as observed at
their interface nodes (also called ports). We refer to these
models as macromodels. A macromodel is a multi-port
linear circuit element that has the same linear relation be-
tween the voltages and currents at its ports as the partition
itself. Using the macromodels, the original (unpartitioned)
network is efficiently solved by replacing the partitions by
the respective macromodels, and then solving the combined
reduced model.

Besides a memory advantage, the macromodeling ap-
proach provides a significant speedup as the creation of
macromodels for the partitions can be performed in par-
allel. However, the gains made from partitioning can be
quickly lost if the partitions generate very dense macro-
models, and thus increase the storage and computational
complexity of the problem. Noting that the port admit-
tance matrix can be fully dense and that the number of ma-
trix entries grows as the square of the number of ports. Our
approach addresses this issue in two ways. First, the par-
titioning is performed strategically to reduce the number
of ports, as explained in Section II-E. Then, an optional
step of sparsification can be applied to the generated mod-
els. The key issue in sparsification is not to compromise
accuracy of the final solution. The sparsification technique
is covered in Section III.

ports | ports | ports |1
- [ (N [ — !
internal internal 1| internal ||
nodes nodes i| nodes |i local grid
| i
k local partitions
Fig. 1. Hierarchical power network analysis

C. Hierarchical Modeling

The macromodel approach for power grid analysis is il-
lustrated in Figure 1. Let us consider a division of the
entire power network into one global partition and & local
partitions. A node in a local partition having links only
to other nodes in the same partition is called an internal
node, a node in the global partition is called a global node,
and a node in a local partition that is connected to some
node outside the local partition (i.e., in the global partition
or in another local partition) is called a port. The global
grid is then defined to include the set of nodes that lie in
the global partition and the port nodes, while the grid in
a local partition constitutes a local grid.

Each of the k local grids is modeled as a multi-port linear
element with a transfer characteristic given by an equation
of the type:

I=A4AV+S, TeRMAeR™™ VeR™SeR™ (3)

where m is the number of ports in the local grid, A is the

port admittance matrix, V is the vector of voltages at the
ports, I is the current through the interface between the
local and global grids, and S is a vector of current sources
connected between each port and the reference node vector.
Vector S essentially has the effect of moving all the current
sources internal in a local grid to the ports of the multi-
port model. We refer to the set (4,S) as the macromodel
of the respective local grid, which is illustrated in Figure
2:

1
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Fig. 2. Macromodel (4,S)

The macromodel (A4,S) in equation (3) is obtained
through a reduction procedure starting from the modified
nodal equations of the local grid. The procedure of de-
riving the transfer characteristic in Equation (3) from the
modified nodal equation is referred to as macromodeling,
and will be addressed in detail in Section II-D.
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Once the macromodels for all the local grids are gener-
ated, the entire network is abstracted simply as the global
grid, with the macromodel elements connected to it at the
port nodes. This is achieved by combining the coefficient
matrix and the right hand side (RHS) current vector of the
global grid with the macromodel, (4,S); Equations (3) of
each local grid may be stamped into the modified nodal
equations of the global grid as follows.

Goo Go1  Goz Gog Vo Io

G@ A1 G2 Gy Vi -S;

G02 GTZ A2 sz Va2 _ 7S2 (4)
. . - : : B

Gy, GL GIL. ... A Vi Sk

In the above equation,

o global nodes are labeled as partition 0

o G;j represents the conductance links between partition ¢
and partition j.

o I is the vector of currents that flow out of the global
nodes.

e S; is the constant vector of partition i.

¢ V; is voltage vector of partition i.

e A; is the port admittance matrix of partition i, where
i €1,k

The left hand side matrix in equation (4) should be sparse
to permit fast solution. Of the blocks in the matrix, the G;;
submatrices are all sparse. The A; matrices are typically
dense, but will be sparsified using a technique described in
Section 3. This is a system of (ng +mq +ma + ... +my)
linear equations, where ng is the number of global nodes
and m; is the number of ports in each partition.

From the above reduction scheme, the voltages and cur-
rents in the entire power grid can be solved in the following
steps:

« Obtain global grid voltages by solving equation (4).

o For each partition, obtain I from equation (3) using the
port voltages

« Solve equation (2) for each partition using I on the right
hand side, to obtain voltages at the internal nodes of par-
titions.

The flow of the macromodel approach is illustrated in Fig-
ure 3.

Loca Grid 1
Macromodeling

A1,S1 Az, s\ /

Global Grid
Solution
Local Grid 1 Loca Grid 2 Local Grid k
Solution

Solution Solution
Fig. 3. Flow of the macromodeling approach
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D. Macromodeling

Macromodeling is the procedure of deriving Equation (3)
from the modified nodal equations of the partition. When

only resistances and capacitances in the local grid are con-
sidered, the linear format of the modified nodal equation,
Equation (2), could be expressed in the form

G-U=J, GeR"",UeR",JecR" (5)

where n is the number of nodes in the local grid, G is the
conductance coefficient matrix, U is the voltage vector of
the nodes of the local grid, and J is the vector of currents
that flow out of each node in the local grid. Here, G and J
are equivalent to G+ C/h, b(t) + C/h-x(t— h) in Equation
(2), respectively. With a fixed time step h, G is stable for
all the time steps while J needs to be updated at each time
step. By splitting the vector U into the vectors at the
internal nodes and ports, Equation (5) can be written as

[gi gZHI‘JfI]:{J:iI] (6)

where

e U; and V are vectors of voltages at the internal nodes
and ports respectively

e J1 and J5 are vectors of current sources connected at the
internal nodes and ports respectively

o I is the vector of currents through the interface

o (G125 is the admittance of links between the internal nodes
and the ports

e (11 is the admittance matrix of internal nodes

e (G52 is the admittance matrix of ports.

From (6), we may rewrite the first set of equations as

Uy = Gy;' (J1 — G2 V) (7)

Substituting this value of U; into the second equation of
(6), we get

I= (G22 — G12G G12)V + (G Gnl.]l — Jg) (8)

Here, G{,G1}'J1 — J, is the constant vector S in Equa-
tion (3) and Gaa — G1T2G1_11 (12 is the port admittance ma-
trix A in Equation (3).

It may be noted that the pre-multiplication and post-
multiplication operations with G;;' can be carried out
without explicitly inverting G11, but through multiple in-
vocation of the direct or iterative solver.

The above calculation can be made very efficient by us-
ing the fact that the coefficient matrix G is symmetric and
positive definite. We show below how A and S can be
computed efficiently from the submatrices of the Cholesky
factors, rather than the Cholesky factors themselves. Re-
lating G11, G12, and G to the submatrices of the Cholesky
factors of G, we have

[Gn G12] [Lu 0 HLITI L%]

GT, G Loy Loy 0 LL
[LuLg; Lu LT, ](9)
L21L{1 L21L§1 + L22L%12

Computing A in terms of submatrices of factors, we get

A = Goy — GTQGﬁlGlz
Ly LY + Ly, LT, —
Ly L3,

Loy L{y (L Liy) " Ly Ly,
(10)
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Similarly, vector S is given by

S = GLG{'I1-32
Loy LI (LE) 'L 3y — T2
= L21L;11J1 —J2

(11)

The above simplified technique reduces the computation
cost dramatically compared to direct computation using
equation (8) where the most time consuming operation is
computing Gl_llGu. This involves performing m solves of
the following system G11x = G12. In the second proposed
approach, the timing consuming operation is the single fac-
torization of the G matrix to obtain the partial factors L;1,
Ly» and Lsy using equation (9). Since these factors are
triangular, computation of (10) and (11) is comparatively
inexpensive. Therefore, this proposed macromodel gener-
ation approach has a significant advantage over the direct
approach using (8).

E. Partitioning technique

The main difficulty in macromodeling is that the model
is often fully dense even though the partition from which
it is created itself may be very sparse. Note that the en-
tries of matrix A in equation (8) are admittances of paths
between pairs of ports. Thus, a nonzero entry at position
(i, 7) results if there is a conducting path in the partition
between these ports, even though there may not be a di-
rect link between these ports. As a result, the number of
nonzero entries in A is O(m?), where m is the number of
ports, unless the grid inside the partition is heavily frag-
mented. Nevertheless, there is a substantial win if m?2 is
much smaller than the number of nodes in the partition
that are abstracted away by this model. In addition, as we
can see from Formula (10), (11), the computation cost of
macromodel (A4,S) is proportional to the dimension of m.
Thus, the key idea in the partitioning strategy is to iden-
tify a subnetwork and an interface boundary such that the
number of internal nodes is much larger than the square of
the number of nodes at the interface. Here, we suggest two
heuristic approaches to accomplish this requirement.

First, in some designs, the natural hierarchical bound-
aries of circuit blocks meet the above criteria. For instance,
a large memory array with 3 local metal layers may have
several millions of internal nodes, but it may have very few
(hundreds of) nodes interfacing with the upper layer of the
global grid, and almost none with other circuit blocks. In
this case, the partitions could be easily identified manually
based on the hierarchy of the design.

However, in some designs, the connection of power grid
between the different partitions are very tight and parti-
tioning along the block boundaries may cause a large num-
ber of ports. In this case, an automatic partitioning tool is
used. The objective is to partition the graph such that the
number of ports is minimized, subjected to the constraint
that the maximal number of nodes a partition is smaller
than a specified number. Furthermore, it is advantageous
to partition the graph so that the number of nodes in all
local partitions are balanced. In this case, the execution
time can be minimized when run parallelly.

Although such a partitioning problem is a well studied,
the difficulty with existing solutions is that they have not
been designed to handle large graphs with tens of millions
of nodes. Therefore, we propose the following methodology,
where the graph partitioning is performed in three phases:
¢ Step 1: Reduce the size of the graph by clustering the
tightly-connected neighboring nodes into one node. This
significantly reduces the size of the graph.

o Step 2: Partition the reduced graph with an established
partitioning tool, such as the state-of-the-art tool, h\METIS
(17, (18],

o Step 3: Expand the clustered nodes in partitioned graph
by replacing each node with the constituent nodes from its
cluster.

Since Step 1 demands only the examination of a node and
its immediate neighboring nodes, the graph is not required
to be held in memory in its entirety at any point in time.
Therefore, portions of the graph can be load and clustered
successively, relieving the memory constraint. After the
clustering is completed, the graph is sufficiently reduced to
hold the entire graph in memory and to execute standard
graph partitioning algorithms on it.

F. Analysis of the Computation Cost

In this section we present the computational advantage
of macromodeling over the flat model analysis approach.

Suppose the cost of factorizing a matrix is C; (1), and the
cost of one forward and one backward substitution is Cs(1),
where [ is the size of the matrix, and Cs(l) << Cy(I). Let
N be the number of nodes in the entire power network.

If no macromodels are used for the power grid analysis,
the computation cost of the first run is C;(N) and the
computation cost of a subsequent run is Ca(N). In the
macromodeling approach, the computation cost of the first
run can be expressed as

Ci(n1) +Ci(n2) + ...+ Ci(ng) + Ci(no + mo + m1 + ... + my)
+C2(n1) 4+ Ca(n2) + ...+ Ca(ng) (12)

Here, n;,i € [1,k] is number of nodes in each partition,
no and m; are defined in Section II-C, and ng + ny + no +
...+ ng = N. The computation cost from macromodeling
is given by C1(ny1) + Ci(n2) + ... 4+ Ci(ng) by using the
simplified macromodeling method described in Section II-
D. The cost of finding the solution to the global network is
Cy(no+mo+my+...+my) and the cost of solving the local
grids is Ca(n1) + Ca2(n2) + ... + Ca(ng), since the factors
obtained from macromodeling can be used for solving the
local grid.

The computation cost of each subsequent run can there-
fore be approximated as

Cz(n0+m0—|—m1—|—. . .+mk)+202(n1)—|—26’2(n2)—|—. . .+202(7Lk) (13)

where the computation cost of macromodeling is Ca(n1) +
Ca(nz2) + ... + Ca(ng) since the A;’s are unchanged and
only the Si’s must be recalculated during the subsequent
run in macromodeling.

Expressions (12) and (13) provide a rough estimate of
computation costs based on the size of the network and its
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partitions. In reality, the density of a matrix is an impor-
tant factor that influences the solution speed. Generally,
the conductance matrices for partitions are denser than
the conductance matrix of the entire network, and thus
the conductance matrix in equation (8) used for the global
solution is a dense matrix.

Typically, Cholesky factorization requires n3/6 multi-
plications and substitution requires n?/2 multiplications.
However, the sparsity of the conductance matrix, combined
with efficient reordering, enables the computation cost to
be less than quadratic with the dimension of the matrix
in practice. Since the computation cost for the flat ap-
proach remains greater than linear, the computation cost
for the macromodel approach will be lower than that for
the flat analysis even with the overheads associated with

partitioning, if the design is sufficiently large.

Most important of all, the divide and conquer procedure
applied to the power network makes parallel execution of
power network simulation possible. During parallel execu-
tion, the execution time of the first run is given by

max(Cl(nl),C’l(ng), e ,C1(7’Lk)) =+ Cl(no +mog+my1 + ...+ mk)
+ max(Ca(n1), C2(n2),...,Ca2(nk))

where Ci(ng + mg + m1 + ... + my) is the global solu-
tion time, max(Ci(n1),Ci(na),...,C1(ny)) represents the
maximum execution time among macromodeling of parti-
tions and max(Cs(n1),Ca(n2),...,Ca(nk)) represents the
maximal execution time out of partition solutions. Simi-
larly, the execution time of the subsequent run is given by

Cz(no +mo+ ...+ mk) + 2 X% max(Cz(nl),Cg(ng),.. . ,Cz(nk))

Moreover, the memory requirement with macromodels is
the maximum memory required for solving any partition,

rather than the sum of memory requirement of each parti-
tion.

Besides run time and memory advantage, macromodel-
ing provides a certain flexibility to a design/analysis situa-
tion so that significant analysis effort can be saved. Given
below are few examples of design/analysis situations when
such flexibility is useful.

Example-1: When a designer is interested in the de-
tailed analysis of only a specific circuit block, significant
design time is saved by not simulating the other partitions,
while accounting accurately for the effect of these other
blocks on the block of interest.

Example-2: A designer knows a priori in which circuit
block or blocks the worst drop is to be expected, and the
objective of the analysis is to only to find the worst IR
drop estimate for the design. Then, it will be necessary to
simulate only a few blocks (partitions) in the last step of
the macromodel approach.

Example-3: The process of fixing problems in a power
grid is usually an iterative one. The process consists of
detecting an error, making local changes to the grid to
correct the problem, and re-running the analysis. In this
case, only the macromodeling of the partition whose grid
was changed needs to be recalculated. The speed-up in
analysis due to this makes it possible for the designer to fix
the problems interactively with the analysis tool.

III. SPARSIFICATION OF M ACROMODELS

In Section II-E, we pointed out that the number of entries
in the macromodel has O(m?) complexity for model size m.
Although the macromodels reduce the size of the system to
the smaller system described in equation (4), the density
of the coefficient matrix of equation (4) increases consid-
erably due to the density of the A; submatrices. For an
iterative solver, this is undesirable as the number of float-
ing point operations (FLOPSs) to solve the system increases.
For a direct solver, this affects both the number of required
FLOPs, as well as the memory required for factorization.
The additional memory demand is caused by excessive fills
created by the dense parts during factoring. Therefore, to
derive the most benefit from the macromodeling approach,
it is important that the coefficient matrix in equation (4) is
kept sparse. While the partitioning strategy explained in
Section II-E is a natural way of achieving this, other spar-
sification techniques in conjunction with good partitioning
schemes are useful for making the macromodeling approach
effective. In this section, we present a novel technique to
sparsify the port admittance matrices of the macromodels.

Our sparsification method is motivated by the observa-
tion that although the matrix A is dense, it consists of a
large number of values that are numerically small and will
have little influence on the results if approximated to zero.
We provide an algorithm to sparsify the coefficient matrix
A by dropping some of its entries, while keeping the error
introduced by this process below a specified value. The pro-
posed sparsification technique also preserves the symmetry
and the positive definite property of the matrix. Note that
the sparsification procedure needs to be performed only
once (during the first run).

A. Problem Definition

The problem is stated as follows: Given the transfer char-
acteristic equation of each partition

i1 ai,1 ai,2 a1,3 a1,m v1 81
i a1 az 2 a3 az,m v2 82
i3 as,1 as 2 as,3 az,m v3 83
= +
im Am,1  Gm,2 Om.3 Am,m Um Sm
(14)

and given a nominal voltage value of v; (j € [1,m]): B,
and the error threshold of i; (j € [1,m]): e;, transform
equation (14) into

i !

7 i
1 a,1 1 a,1,2 al1,3 a’ll,m v1 81
-7
1’2 a%!l a’2,2 a?,s ce alz’m Vo S0
3 — @31 Q@32 Q33 @3,m U3 + 83
-7 7 i i I
Im AUm1 Cma Gm3 - Oy Um Sm

such that the number of a} ;, (j # k, @} ;, = 0) is maximized,
subject to | i/ —i; |[< e; (j € [1,m]) and a},
(maintaining matrix symmetry).

Here, the error threshold e; can be defined as | s; xz% |,
where s;,1 < j < m, is as defined in Equation (14), and 2%
is the user-defined error limit. As we can see from Equa-
tions (4), voltage and current follow a linear relationship.

— 1
= Qg
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If each current in the system is within the error bound,
2%, the error bound for voltage is £%. Therefore, from the
specification that e; is no more than | s; x 2% |, we can
tell that the error bound of 2% is guaranteed.

B. Problem Formulation

This problem can be formulated into a 0-1 multidimen-
sional knapsack problem [19], [20]. In this section, we de-
scribe the transformation from the above problem to the
knapsack problem.

The task here involves zeroing out off-diagonal elements
of the matrix A. It is easy to show that these sparsifica-
tion operations maintain the positive definite property of
the matrix. To see this, we note first that the partition can
be thought of as being purely resistive (for example, any
capacitors are linearized). Given this “resistive” network,
one may build an equivalent network of a set of equiva-
lent resistances R;, between each pair of ports j and k.
The matrix A is then simply the conductance matrix for
this network of Rj;’s, and is therefore diagonally domi-
nant. This leads to three conclusions: (1) all off-diagonal
elements must be non-positive, (2) zeroing out off-diagonal
elements of A maintains the diagonal dominance of the ma-
trix, and therefore its positive definite property, and (3) the
resulting IR drop voltages after sparsification are conser-
vative since some resistances are ignored.

The problem formulation is described as follows. First
consider the maximum error that an element of matrix a;
can cause if it is rounded off to 0. Since B is positive and
ajr < 0,5 # k, the maximum negative error caused by
rounding off a; x, en; x, is given by

enjr =ajr*B,j £k

Let X represent a Boolean value, 1 when element a; x is
rounded to zero, and 0 otherwise. The matrix sparsification
problem can be formulated as 0-1 knapsack problem as
follows.

.. m k
Maximize z(z) = o1 Ej=1 Xk
- m .
_ Ei=1 enj . * Xji — Ek=j+1 enj . * X; 6 < ej,j €[1,m]
Xj,k c {0, 1} for all Xj,k, i<k

subject to

In the above formulation, the indices of the variables X x
are required to satisfy the relation j < k, so that X;; =1
indicates the rounding-off of both a; ; and a;,; to maintain
the symmetricity of A. Therefore, the resulting sparsified
matrix is symmetric and positive definite.

The 0-1 knapsack problem can be solved optimally either
by dynamic programming or using an integer programming
solver. In our implementation, we use the latter, but with
some modifications for speed considerations. First, we re-
lax the integer requirement and solve the fractional knap-
sack problem using a linear programming solver [21]. Next,
the fractional z;;’s are sorted, and the corresponding en-
tries in the matrix are successively set to zero until the
maximum error in |i;| reaches the specified limit, e;. The
run time of sparsification is very small compared to the
simulation time of the linear solver. Therefore, it impacts
the speedup very slightly.

IV. EXPERIMENTAL RESULTS

The hierarchical analysis method using macromodels was
implemented using C and embedded in an existing indus-
trial power analysis tool [1]. An efficient direct linear solver
based on Cholesky factors was used in all the experiments.
The extracted power grids of six high performance general
purpose/DSP microprocessor chips were used to bench-
mark the performance of macromodeling (Tables I and II)
and sparsification (Table IIT) techniques. Chips 1, 2 and 4
are DSP and communication chips whose power grids are
implemented in 3 layers of metal. Chips 3, 5 and 6 are high
performance microprocessor chips using 5 and 6 metal lay-
ers respectively. The analyses were carried out on the Sun
workstations whose clock frequencies range from 300MHz
to 460MHz and whose memories are around 1 - 4 Gigabyte.
The run time measures used for comparison are based on
the actual time required to complete the task.

A. Performance of Macromodeling Technique

Table I compares the performance of the proposed hi-
erarchical approach using macromodels with that of the
nonhierarchical approach. Two metrics are compared: the
peak memory demand and the total run-time. The num-
ber of nodes, in millions, for the entire power network is
given in Column 2, the number of partitions used by the
macromodeling algorithm are listed in Column 3, and the
number of nodes in the largest partition is given in Col-
umn 4. Columns 5 and 6 show the total time, in min-
utes, required by the hierarchical approach, while Column
8 shows the total time taken for completing the analysis
on the flat model. The run-time in Column 5 corresponds
to the cases when the macromodels for the various parti-
tions were generated serially on a single computer, whereas
Column 6 is for the cases when these computations are per-
formed in parallel. The run-time reported in this table is
the time taken for analyzing the power network at the first
time point in a sequence of simulations. Columns 4 and
9 show the peak memory demand, in Gigabytes, during
the analysis with macromodels and without macromodels,
respectively. Chip-4, 5, 6 can not be solved without macro-
modeling due to their large size.

It is evident from the above table that the problem size
tackled with the proposed approach is substantially re-
duced from the original problem. This is the primary goal
of the proposed approach so that a chip-level analysis of
very large designs is made possible. Based on the bench-
marks, it can be seen that the size of the linear system
that needs to solved with the new approach is about 10X
smaller than the traditional approach.

The effect of problem size reduction is clearly reflected in
the peak memory requirements of the different approaches
shown in the table. Again, a 10X to 20X reduction in
memory requirement is seen possible with the hierarchical
approach. This implies that, given sufficient computing
resources, the new method enables the analysis of much
larger designs that are now common. For the design such
as Chip 4, 5 and 6, flat analysis is infeasible due to limited
memory resources. Therefore, our proposed macromodel-
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TABLE I
RUN-TIME AND MEMORY COMPARISON FOR THE FIRST SIMULATION

Chip F#nodes With macromodel Without macromodel
(millions) # | #nodes(max) Total Run-time Peak || Run-time Peak
part (millions) || Serial(min) | Parallel(min) | Memory (GB) || (minutes) | Memory (GB)
Chip-1 3.9 12 0.40 43 7 0.2 93 1.5
Chip-2 2.7 9 0.58 25 6 0.3 57 1.2
Chip-3 7.5 11 0.79 136 26 0.4 629 2.6
Chip-4 20.0 7 3.5 444 152 1.3 - -
Chip-5 41.5 20 4.1 995 93 1.8 - -
Chip-6 63.5 30 3.3 1796 82 1.6 - -

ing approach is the only approach for analyzing these large
networks in detail. From the results, we can see that with-
out macromodels the run time can be several hours (e.g.,
10.5 hours for Chip 3) for a supply network with millions
of nodes. As a result of reducing the size complexity, the
run-time is reduced by a factor of 2X to 5X even when
the macromodels are computed one after another on a sin-
gle computer. The run-time is dramatically reduced by
10X to 23X, if the parallelism created by the macromodel
is utilized. It is noteworthy that the speedups improve
with the size of the circuit under consideration. Also, note
that given additional computing resources, the proposed
approach allows the analysis of large designs (such as Chip
6) with the same run time as smaller design. Therefore,
our approach provides a scalable solution that is practical
in a parallel or a network of workstations environment.

TABLE II
COMPARISON OF RUN TIME FOR 1000 SUBSEQUENT SIMULATIONS

Chip Without macromodel With macromodel
run-time run-time
(hours) Total(hours) [ Parallel(hours)
Chip-1 8.4 28.0 1.0
Chip-2 8.0 22.5 1.4
Chip-3 33.7 43.5 6.6

Table IT compares the performance of the two approaches
based on the time required to perform simulations of 1000
successive time points, after the first time point. Thus,
the shown run-times are independent of the time taken to
generate the macromodels. Column 2 shows the run time
without macromodels. For the hierarchical approach, run-
times for both serial (Column 3) and parallel (Column 4)
execution are shown. Since the memory requirement of
these runs is less than that of the first run, these figures
are omitted in Table II.

The hierarchical approach executed in serial mode
recorded unfavorable run-times for the benchmarks in the
cases where it was feasible to obtain the results for the non-
hierarchical approach using the available computational re-
sources. However, the disparity in run-times between the
nonhierarchical and hierarchical approach (in serial mode)
diminishes as the size of the original network becomes
larger, as evidenced from the results for Chip-3, which has
7.5 million nodes. This behavior is not unexpected, and
can be explained by the fact that the overhead associated
with computing the S vector for each partition at every

time step, and back-solving each partition again in the final
step of the solution, is a dominant factor. This behavior is
exhibited for networks up-to a certain size, where the orig-
inal matrix and the reduced matrix do not differ greatly in
terms of the time required for a back-solve. However, as
the network becomes larger, the difference in problem sizes
with and without macromodels are significantly different,
and the overhead cost of handling the partitions becomes
negligible in the overall cost. As a result, the hierarchical
approach becomes favorable for large networks even in the
serial execution mode.

The run-time advantage of parallel execution mode is
very clear from Table II. Results show that the parallel ex-
ecution utilizing hierarchy is 1.8 — 5.1 times faster than the
nonhierarchical approach. As designers would like to sim-
ulate the power grid with long traces of current signatures
in order to obtain good coverage of the IR-drop situations,
efficiency of simulation in this phase is crucial. The parallel
execution mode, as well as the flexibility in the hierarchi-
cal analysis and its ability to analyze grids with tens of
millions of nodes, make the hierarchical analysis approach
extremely attractive.

B. Performance of the Sparsification Technique

The sparsification procedure described in Section III re-
duces the number of nonzero elements while maintaining
an acceptable level of accuracy. In our implementation, the
specified error e; is defined as e; = max(const, | s; x 2% |,
where const is a small positive constant, s;,1 < j < m, is as
defined in Equation (14), and z% is the user-defined error
limit, which is typically 0% — 10%. The sparsification tech-
nique was implemented using a linear programming solver
Ip_solve_2.3[21].

Table III reports the sparsity and run-time improve-
ments achieved for two benchmark examples, analyzed at
different levels of accuracy. The second column in the table
shows the voltage value of the clean power supply and the
value of the maximum voltage drop observed in the circuit.
Columns 3 reports the number of nodes and the total num-
ber of ports respectively in the global grid. The number of
nonzero elements in the coefficient matrix of equation (4)
are shown in Column 4. Column 5 shows the maximum
voltage error caused by the sparsification procedure. The
ratio of maximum observed error in voltage to the maxi-
mum voltage drop is shown in column 6. Finally, column 7
reports the time required to solve for the global node volt-
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ages with Equation (4). In Column 7, the execution time
for LP solver is not included, since generally it completes
in seconds.

For each benchmark, the proposed sparsification tech-
nique was tested at four levels of accuracy. The benchmark
Chip-7 is a 6-layer, mesh type, power grid. Its power grid
is much denser than the other examples, and this example
also has some partitions with large number of ports. As
a result, the coefficient matrix obtained for this example
could not be solved with the available computing resources
without sparsification.

The results clearly show that the sparsity of the coef-
ficient matrix is improved by as much as 11X, incurring
only 2.6% error in the final results. The improved spar-
sity improved the run-time for the dense example, Chip-7
significantly, besides greatly reducing the memory require-
ment.

TABLE III

THE EFFECT OF SPARSIFICATION
Chip Vdd/ | #node/ #non- Max-err Error Run-
Max- #port zeroes (v) % time
dp(v) (secs)
Chip 2.0/ 23261/ 106909 0.0 0.0% 38.3
-3 0.12 379 98505 0.000043 0.04% 36.0
98253 0.00058 0.5% 324
98005 0.0013 1% 30.6
Chip 1.8/ 2932/ 2067572 0.0 0.0% -
-7 0.02 2849 366612 0.000045 0.2% 36.5
249588 0.00021 1.0% 24.4
197868 0.00051 2.6% 20.1

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a hierarchical power
network analysis method using novel macromodeling and
matrix sparsification techniques, where the macromodeling
method gives the exact same solution as the flat method,
and the matrix sparsification technique guarantees a con-
servative approximation. The proposed techniques were
shown to gain significant memory and run-time advantages
over the traditional approach of analyzing the power net-
work without using the hierarchy. The experimental re-
sults based on analyzing the entire power network of six
high performance microprocessor designs confirmed these
claims. The hierarchical analysis approach shows excellent
promise as a viable alternative to the traditional nonhierar-
chical analysis method, capable of handling the increasing
size of power grids in modern microprocessors.
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